Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Binomial Option Pricing Model || Theory & Implementation in Python

  • QuantPy
  • 2021-07-06
  • 35988
Binomial Option Pricing Model || Theory & Implementation in Python
binomial option pricing modeloption pricingoption pricing modelrisk-neutral probabilityrisk neutral probability option pricingoption pricing explainedoption pricing pythonbinomial model and black scholes modeloptionsrisk-neutral valuationvaluation of options
  • ok logo

Скачать Binomial Option Pricing Model || Theory & Implementation in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Binomial Option Pricing Model || Theory & Implementation in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Binomial Option Pricing Model || Theory & Implementation in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Binomial Option Pricing Model || Theory & Implementation in Python

Today I will introduce the Theory of the Binomial Asset Pricing Model and show how you can implement the binomial tree model to price a European call option in Python. The theory section of this video is long (sorry) and aims at giving you the absolute basics for understanding why and how to derive the discounted expectation of future payoffs under risk-neutral probabilities given the Binomial Model.

For those who just want to code, please skip ahead to the Python Implementation section. I will take you through two implementations of a simple binomial tree model in Python, one that will use ‘for loops’ to step through each node at each time step (a function I have defined as binomial tree slow), and the other (binomial tree fast) will vectorize these steps using numpy arrays, improving overall computation time as N time steps increase. Although not necessary for the example today, using numpy arrays and vectorizing our calculations will improve computations as we delve deeper into financial mathematics and implementation heading forward.

In this tutorial series we will be breaking down the theory described and published in Steven Shreve’s book’s Stochastic Calculus for Finance I & II. As a guide for implementing these concepts in Python, we will refer to the numerical methods and practices outlined in Les Clewlow & Chris Strickland’s book Implementing Derivatives Models.

00:00 Intro
00:50 Theory || What is Arbitrage? – Type I & II
04:20 Theory || No Arbitrage Pricing – The Law of One Price
05:47 Theory || One-period Binomial Model
11:00 Theory || Deriving the discounted expectation of future payoffs under risk-neutral probabilities
20:10 Theory || No Arbitrage Conditions
24:10 Theory || Multi-period Binomial Model
29:50 Python Implementation || Binomial Tree Slow
41:12 Python Implementation || Binomial Tree Fast
46:55 Python Implementation || Comparing the Slow vs Fast Implementation

★ ★ Code Available on GitHub ★ ★
GitHub: https://github.com/TheQuantPy
Specific Tutorial Link: https://github.com/TheQuantPy/youtube...

★ A data driven path to getting a job in Quant Finance
https://www.quantpykit.com/

★ QuantPy GitHub
Collection of resources used on QuantPy YouTube channel. https://github.com/thequantpy

Disclaimer: All ideas, opinions, recommendations and/or forecasts, expressed or implied in this content, are for informational and educational purposes only and should not be construed as financial product advice or an inducement or instruction to invest, trade, and/or speculate in the markets. Any action or refraining from action; investments, trades, and/or speculations made in light of the ideas, opinions, and/or forecasts, expressed or implied in this content, are committed at your own risk an consequence, financial or otherwise.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]