Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Modify a 2D Array by 2x2 Blocks with NumPy

  • vlogize
  • 2025-02-24
  • 3
Efficiently Modify a 2D Array by 2x2 Blocks with NumPy
NumPy way to modify 2d array by 2×2 blocksnumpypythonscipy
  • ok logo

Скачать Efficiently Modify a 2D Array by 2x2 Blocks with NumPy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Modify a 2D Array by 2x2 Blocks with NumPy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Modify a 2D Array by 2x2 Blocks with NumPy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Modify a 2D Array by 2x2 Blocks with NumPy

Discover a simple method to modify 2D arrays using `2x2` blocks in NumPy, improving efficiency and readability in your Python code!
---
This video is based on the question https://stackoverflow.com/q/77708363/ asked by the user 'Pavel' ( https://stackoverflow.com/u/23142776/ ) and on the answer https://stackoverflow.com/a/77708484/ provided by the user 'chrslg' ( https://stackoverflow.com/u/20037042/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, comments, revision history etc. For example, the original title of the Question was: NumPy way to modify 2d array by 2×2 blocks

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Modify a 2D Array by 2x2 Blocks with NumPy

When working with 2D arrays in Python, you may often encounter situations where modifying specific sections or blocks of data can be both tedious and inefficient, especially when using basic Python constructs. One common requirement is to manipulate 2x2 blocks within a larger 2D grid. If you find yourself in this scenario, you may be interested in leveraging NumPy's capabilities to make the process smoother and faster.

In this guide, we’ll delve into an efficient method for modifying 2x2 blocks in a 2D NumPy array, using a lookup table (LUT) to streamline the process.

The Problem: Modifying 2x2 Blocks

Let’s say you have a binary grid (a 2D array of 0s and 1s) and a need to modify specific 2x2 sections based on certain conditions. The naive approach, which involves iterating over the grid with a nested loop, can be quite slow and cumbersome, especially for larger arrays.

The Solution: Using NumPy's Power

Step 1: Set up the Lookup Table (LUT)

To use a lookup table, we first define it to dictate what 2x2 block transformation we want:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Creating the Array

Next, you will randomly generate a 10x10 binary array:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Generating Views of the Array

Now comes the critical part! Instead of iterating, you harness NumPy’s striding capabilities to create a new view of the array. This allows us to effectively work with 2x2 blocks without duplicating data:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Applying the Transformations

With the view Av of A now representing 5x5 blocks of 2x2, we can perform the transformation:

[[See Video to Reveal this Text or Code Snippet]]

Example Result

To illustrate how our transformations can change the data, let’s look at an example output before and after the modification:

Before:

[[See Video to Reveal this Text or Code Snippet]]

After:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By leveraging NumPy's efficient array handling and striding capabilities, we can significantly reduce the complexity and improve the performance of modifying 2x2 blocks in a 2D array. This method not only keeps your code clean and readable but also takes full advantage of the powerful features provided by the NumPy library.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • The Best Way To Learn Programming
    The Best Way To Learn Programming
    1 год назад
  • Unhinged sorting algorithms 😵‍💫 #coding
    Unhinged sorting algorithms 😵‍💫 #coding
    1 год назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]