Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Optimize Python Pandas Code Using .to_dict for Performance Improvements

  • vlogize
  • 2025-03-21
  • 1
How to Optimize Python Pandas Code Using .to_dict for Performance Improvements
How to optimize this python pandas code using .to_dict?pythonpandaskubernetes
  • ok logo

Скачать How to Optimize Python Pandas Code Using .to_dict for Performance Improvements бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Optimize Python Pandas Code Using .to_dict for Performance Improvements или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Optimize Python Pandas Code Using .to_dict for Performance Improvements бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Optimize Python Pandas Code Using .to_dict for Performance Improvements

Discover strategies to enhance the performance of your Python Pandas code using `.to_dict` while understanding potential execution time differences between local and pod environments.
---
This video is based on the question https://stackoverflow.com/q/75995160/ asked by the user 'An old man in the sea.' ( https://stackoverflow.com/u/3482266/ ) and on the answer https://stackoverflow.com/a/75995503/ provided by the user 'Arne' ( https://stackoverflow.com/u/13014172/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to optimize this python pandas code using .to_dict?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Optimize Python Pandas Code Using .to_dict for Performance Improvements

When working with data in Python, efficiency is paramount, especially in high-performance environments. Recent experiences in a local setup versus a Kubernetes pod emphasize the need for proper optimization techniques. In this guide, we will explore a specific scenario involving Python's Pandas library where a noticeable performance disparity occurs, and we will provide a practical solution to optimize the code using the .to_dict() method.

The Problem

A developer tests the following code snippet locally and within a pod, only to uncover an unexpected increase in execution time. The original code, which effectively retrieves profile data using the Pandas library, takes about 0.031 seconds locally but stretches to 0.1 seconds in a pod environment. The developer wonders not only if there’s a way to optimize the code but also what factors contribute to this performance gap.

The code snippet in question is as follows:

[[See Video to Reveal this Text or Code Snippet]]

Key Elements of the Code:

profiles_df: A DataFrame containing the main data set.

data_cols: A list of columns to extract data from.

new_cols: A list of new column names.

profile_ids: A list that identifies which records to fetch.

The Solution

1. Eliminate Redundant Renaming

One of the key performance bottlenecks in the original code is the use of the rename() function, which introduces additional overhead. Instead of renaming columns after filtering the DataFrame, it’s more efficient to construct the output directly, using dictionary comprehension.

Revised Code Implementation:

By using a dictionary comprehension, we can build the desired result without the need for renaming:

[[See Video to Reveal this Text or Code Snippet]]

Benefits of This Approach:

Reduced Overhead: Skipping the renaming step can significantly reduce execution time.

Simplified Logic: The code becomes easier to read and maintain.

Direct Mapping: Provides a clearer structure for how data maps from the DataFrame to the dictionary format.

Understanding Performance Discrepancies

While we have addressed how to optimize the code, it's equally important to consider why the performance may differ between environments. There are several potential factors:

Resource Allocation: Pods may have different resource limitations (CPU, memory) than your local setup. Although your pod has not reached its limits, other factors could still affect processing speeds.

Data Size: The data volume or configuration may vary when running locally versus in a pod, impacting execution time.

Environmental Configuration: Differences in the underlying hardware, such as CPU architecture and I/O performance, can lead to variations in execution speed.

Conclusion

Optimizing your Python Pandas code to run more efficiently can significantly enhance performance, especially in resource-constrained environments like Kubernetes pods. By eliminating unnecessary steps—such as renaming columns—you can achieve faster execution times and greater resource efficiency.

By implementing the provided code changes and considering the various environmental factors, you can ensure that your data processing tasks are as swift and effective as possible. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]