Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Probability in Boolean and in Many-valued Logic - Daniele Mundici SPLogIC2023 February 14th

  • Centro de Lógica, Epistemologia CLE/UNICAMP
  • 2025-08-12
  • 19
Probability in Boolean and in Many-valued Logic - Daniele Mundici SPLogIC2023 February 14th
LógicaLógica UnicampCLESPLogIC2023
  • ok logo

Скачать Probability in Boolean and in Many-valued Logic - Daniele Mundici SPLogIC2023 February 14th бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Probability in Boolean and in Many-valued Logic - Daniele Mundici SPLogIC2023 February 14th или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Probability in Boolean and in Many-valued Logic - Daniele Mundici SPLogIC2023 February 14th бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Probability in Boolean and in Many-valued Logic - Daniele Mundici SPLogIC2023 February 14th

Probability in Boolean and in Many-valued Logic: Axioms, Definitions and Consistency Theorems (Course 7)

Daniele Mundici (University of Florence, Italy)

Abstract: In [Chapter XVI, 4, p. 246] of his “Investigation of the laws of thought,” (Walton and Maberley, London, 1854, reprinted Dover, NY, 1958), Boole writes:

the object of the theory of probabilities might be thus defined. Given the probabilities of any events, of whatever kind, to find the probability of some other event connected with them.

The first question concerns the consistency of these probability assignments. We will deal with this logical problem, both for yes-no boolean events and for continuous events in Łukasiewicz infinite-valued logic.
We will assume no prerequisites in probability theory and in many-valued logic.
In standard textbooks on probability, the additivity of probability for disjunctions of incompatible events is an axiom, while the multiplicativity of probability for conjunctions of independent events is a definition. Interestingly, on page 168 of his 1905 lecture notes (cited below), one finds the following remark by Hilbert:

in the present state of development, especially the terms axiom and definition are still a bit confused.

Recalling the well known adage “old theorems never die: they turn into definitions”, we will show that both the additivity axiom and the definition of independence by the product law are in fact corollaries of a deeper notion of consistency, going back to de Finetti. If time allows, working in the context of Łukasiewicz infinite-valued logic we will cast light to the vexata quaestio of countable vs. finite additivity.

References

D. Hilbert, Logische Prinzipien des mathematischen Denkens. Sommersemester 1905. (Logical principles of mathematical thinking.) Lecture notes taken by M. Born. Niedersächsische Staats-und Universitätsbibliothek Göttingen, Handschriftenabteilung, Cod. Ms. D. Hilbert 558; Lecture notes taken by E. Hellinger. University of Göttingen, Library of the Mathematical Institut.

B. de Finetti, Sul significato soggettivo della probabilità. Fundamenta Mathematicae, 17 (1931) 298-329. Translated into English as “On the Subjective Meaning of Probability”. In: P. Monari et al. (Eds.), Probabilità e Induzione, CLUEB, Bologna, pp. 291-321, 1993.

__________ La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut H. Poincaré, 7 (1937) 1-68. English translation by Henry E. Kyburg Jr., as “Foresight: Its Logical Laws, its Subjective Sources.” In: H. E. Kyburg Jr. et al. (Eds.), “Studies in Subjective Probability”, J. Wiley, New York, pp. 93-158, 1964. Second edition published by Krieger, New York, pp. 53-118, 1980.

R. Cignoli, I.M.L. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer, 2000. Reprinted by Springer Science & Business Media, 2013.

D. Mundici, Bookmaking over infinite-valued events, International J. of Approximate Reasoning, 43 (2006) 223-240.

_________ Interpretation of de Finetti coherence criterion in Łukasiewicz logic, Ann. Pure Applied Logic, 161 (2009) 235-245.

_________ Coherence of the product law for independent continuous events. Chapter 10, pp 207-212, in: Contradictions, from Consistency to Inconsistency, W. Carnielli and J. Malinowski (Eds.), Trends in Logic, Vol. 47, Springer International Publishing, Springer Nature Switzerland AG, 2018.

__________ Coherence of de Finetti coherence, Synthese, 194 (2017) 4055-4063. Ibid., 196 (2019) 265-271.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]