Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily

  • vlogize
  • 2025-05-25
  • 0
Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily
Pandas select rows by multiple conditions on columnspythonpandasdataframe
  • ok logo

Скачать Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily

Learn how to efficiently select rows in a Pandas DataFrame based on multiple conditions across columns, enhancing your data analysis process.
---
This video is based on the question https://stackoverflow.com/q/72018721/ asked by the user 'Lilly_Co' ( https://stackoverflow.com/u/17783040/ ) and on the answer https://stackoverflow.com/a/72018838/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas select rows by multiple conditions on columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Streamlining Data Selection with Pandas: Selecting Rows by Multiple Conditions Easily

When working with data in Python, especially with the powerful Pandas library, it's common to encounter the need to filter data based on multiple conditions. For instance, you might want to select specific rows in a DataFrame that meet certain criteria across various columns. This guide will guide you on how to efficiently select rows by multiple conditions on columns using a step-by-step approach.

The Problem

Imagine you have a DataFrame that contains population data by country and year, segmented by various granularity levels such as Total, Female, Male, Urban, and Rural. You'd like to retrieve all the rows for the Year 2017 where the granularity is either Total or Urban.

For example, here's a glimpse of your DataFrame:

ZoneGranularityYearValueAfghanistanTotal200020779.953AfghanistanUrban20004436.282ZimbabweTotal201814438.802ZimbabweUrban20185447.513You attempted to perform this selection with the following code:

[[See Video to Reveal this Text or Code Snippet]]

However, you encountered issues retrieving the desired data. Let's explore how you can resolve this problem effectively.

Understanding the Issue

The challenge you're facing is likely linked to the data types in your DataFrame. Specifically, the Year may be stored as integers rather than strings. This discrepancy can cause filtering to behave unexpectedly. The solution involves modifying how you refer to the Year column in your filtering criteria.

The Solution

To correctly filter the DataFrame, you will need to ensure that you are comparing similar types. Here’s the updated code to achieve your goal of selecting rows for the Year 2017 with granularity levels Total and Urban:

[[See Video to Reveal this Text or Code Snippet]]

Code Breakdown

df['Granularity'].isin(['Total', 'Urban']): This checks if the value in the Granularity column is either "Total" or "Urban".

df['Year'].eq(2017): Instead of comparing the Year to '2017' as a string, we use .eq(2017) to ensure we are comparing integers.

The combined condition: By using the & operator, we ensure that both conditions must be satisfied for a row to be included in the output.

Output Validation

Once you run the corrected filter, you will obtain rows matching your criteria. Here is an example of what the output might look like (note that you may not see data for 2017 if it doesn't exist in your DataFrame):

ZoneGranularityYearValueZimbabweTotal201814438.802ZimbabweUrban20185447.513Conclusion

Mastering data selection using multiple conditions in Pandas can significantly optimize your data analysis process. By ensuring data types are consistent and using the proper selection methods, you can make your code cleaner and more efficient. Next time you're filtering a DataFrame, remember the power of .isin() and .eq() for effective row selection.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]