Aging-US #published this #researchpaper as the #cover for Volume 15, Issue 21, entitled, "Longitudinal characterization of behavioral, morphological and transcriptomic changes in a tauopathy mouse model" by researchers from the Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY.
#aging #ad #alzheimersdisease #tau #cognitive #brain #neurology #openaccess #openscience #research #peerreview #journal #publication #publishing #meded
DOI - https://doi.org/10.18632/aging.205057
Corresponding author - Zhen Yan - [email protected]
Abstract
Neurodegenerative disorders, such as Alzheimer’s disease (AD), have the gradual onset of neurobiological changes preceding clinical diagnosis by decades. To elucidate how brain dysfunction proceeds in neurodegenerative disorders, we performed longitudinal characterization of behavioral, morphological, and transcriptomic changes in a tauopathy mouse model, P301S transgenic mice. P301S mice exhibited cognitive deficits as early as 3 months old, and deficits in social preference and social cognition at 5–6 months. They had a significant decrease of arborization in basal dendrites of hippocampal pyramidal neurons from 3 months and apical dendrites of PFC pyramidal neurons at 9 months. Transcriptomic analysis of genome-wide changes revealed the enrichment of synaptic gene upregulation at 3 months of age, while most of these synaptic genes were downregulated in PFC and hippocampus of P301S mice at 9 months. These time-dependent changes in gene expression may lead to progressive alterations of neuronal structure and function, resulting in the manifestation of behavioral symptoms in tauopathies.
Sign up for free Altmetric alerts about this article -
https://aging.altmetric.com/details/e...
Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to...
Keywords - aging, Alzheimer’s disease, tau, cognitive behaviors, transcriptomic, neuronal morphology
About Aging-US
Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging-US go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.
Please visit our website at https://www.Aging-US.com and connect with us:
SoundCloud - / aging-us
Facebook - / agingus
Twitter - / agingjrnl
Instagram - / agingjrnl
YouTube - / @agingjournal
LinkedIn - / aging
Pinterest - / agingus
Media Contact
18009220957
[email protected]
Информация по комментариям в разработке