Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A Comprehensive Guide to Adapting mutate Calls for n Binary Variables in R

  • vlogize
  • 2025-10-06
  • 0
A Comprehensive Guide to Adapting mutate Calls for n Binary Variables in R
R: adapt mutate call from handling three binary variables to n binary variablestidyversedplyrtidyselect
  • ok logo

Скачать A Comprehensive Guide to Adapting mutate Calls for n Binary Variables in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A Comprehensive Guide to Adapting mutate Calls for n Binary Variables in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A Comprehensive Guide to Adapting mutate Calls for n Binary Variables in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A Comprehensive Guide to Adapting mutate Calls for n Binary Variables in R

Learn how to modify your R dataframe handling for varying numbers of binary variables using `mutate` with an in-depth look into reshaping methods in dplyr.
---
This video is based on the question https://stackoverflow.com/q/63973178/ asked by the user 'JRR' ( https://stackoverflow.com/u/8772574/ ) and on the answer https://stackoverflow.com/a/63973306/ provided by the user 'akrun' ( https://stackoverflow.com/u/3732271/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: R: adapt mutate call from handling three binary variables to n binary variables

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction to the Problem

When working with dataframes in R, especially those that contain multiple binary variables across different time periods, it can be challenging to evaluate changes over time efficiently. For example, consider a scenario where you have several items (binary variables) that represent different states during two time periods.

Suppose you are given a dataframe with three binary variables (item_1, item_2, item_3) for time period 1 and the same for time period 2. Your goal is to determine whether an observation was marked as 1 (true) during time period 1 but 0 (false) during time period 2.

The Challenge

The task becomes complicated when instead of three items, you require a solution that works for n items. You want to generalize your mutate operations so they can handle an arbitrary number of binary variables without altering the fundamental approach.

Solution Overview

To solve this problem, we can take advantage of R's tidyverse suite, which includes libraries like dplyr and tidyr. The proposed solutions include transforming your data into a long format and using either dplyr or even base R functions to achieve the desired results.

Step 1: Reshape the Data

Using tidyr, you can reshape your dataframe to a long format, making it easier to manipulate multiple items systematically:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

pivot_longer: This function transforms the dataframe from "wide" to "long" format, which is key for analyses when dealing with multiple binary variables. The names_to argument specifies that names will be split into a 'group' (item) and other value columns.

mutate(across(...)): Using this code, we replace any NA values with 0, allowing for accurate calculations during subsequent steps.

Step 2: Construct the Check Logic

Now that the data is reshaped, you can create logic to determine whether a binary variable meets the required conditions:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

group_by and transmute: These functions allow us to compute the required condition (items being 1 in period 1 and 0 in period 2) for each item in a compact manner.

Summary and Join: By summarizing the checks and joining back to the original dataframe, you maintain the structure while adding the necessary checks.

Alternative: Using Base R

If you prefer not to use dplyr, you can achieve similar outcomes using base R:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

lapply and split.default: This base R approach systematically checks each pair of time_1 and time_2 columns for the defined logic and combines results using the Reduce function.

Conclusion

By reshaping and restructuring your data, you can efficiently generalize your mutate calls to handle any number of binary variables, making your R code more robust and flexible. Whether using tidyverse or base R, these methods provide straightforward solutions to evaluate conditions across time periods.

Now you can adapt your analyses to accommodate as many binary variables as your dataframe holds, empowering your data manipulation endeavors with efficiency and ease.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]