Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Sylvia Frühwirth-Schnatter: Bayesian econometrics in the Big Data Era

  • Centre International de Rencontres Mathématiques
  • 2018-12-14
  • 624
Sylvia Frühwirth-Schnatter: Bayesian econometrics in the Big Data Era
CirmCNRSSMFMathematicsmathématiquesMarseilleLuminyCentre international de rencontres mathématiquesaix-marseilleuniversitéAMUaixmarseilleuniversity
  • ok logo

Скачать Sylvia Frühwirth-Schnatter: Bayesian econometrics in the Big Data Era бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Sylvia Frühwirth-Schnatter: Bayesian econometrics in the Big Data Era или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Sylvia Frühwirth-Schnatter: Bayesian econometrics in the Big Data Era бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Sylvia Frühwirth-Schnatter: Bayesian econometrics in the Big Data Era

Abstract: Data mining methods based on finite mixture models are quite common in many areas of applied science, such as marketing, to segment data and to identify subgroups with specific features. Recent work shows that these methods are also useful in micro econometrics to analyze the behavior of workers in labor markets. Since these data are typically available as time series with discrete states, clustering kernels based on Markov chains with group-specific transition matrices are applied to capture both persistence in the individual time series as well as cross-sectional unobserved heterogeneity. Markov chains clustering has been applied to data from the Austrian labor market, (a) to understanding the effect of labor market entry conditions on long-run career developments for male workers (Frühwirth-Schnatter et al., 2012), (b) to study mothers’ long-run career patterns after first birth (Frühwirth-Schnatter et al., 2016), and (c) to study the effects of a plant closure on future career developments for male worker (Frühwirth-Schnatter et al., 2018). To capture non- stationary effects for the later study, time-inhomogeneous Markov chains based on time-varying group specific transition matrices are introduced as clustering kernels. For all applications, a mixture-of-experts formulation helps to understand which workers are likely to belong to a particular group. Finally, it will be shown that Markov chain clustering is also useful in a business application in marketing and helps to identify loyal consumers within a customer relationship management (CRM) program.

Recording during the meeting "Bayesian statistics in the big data era" the November 28, 2018 at the Centre International de Rencontres Mathématiques (Marseille, France)

Filmmaker: Guillaume Hennenfent

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
Chapter markers and keywords to watch the parts of your choice in the video
Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
Multi-criteria search by author, title, tags, mathematical area

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]