Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Rename and Run Calculations on DataFrame Columns in Python Pandas

  • vlogize
  • 2025-05-27
  • 0
How to Efficiently Rename and Run Calculations on DataFrame Columns in Python Pandas
rename and run calculations based on column keywordspythonpandasstringdataframe
  • ok logo

Скачать How to Efficiently Rename and Run Calculations on DataFrame Columns in Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Rename and Run Calculations on DataFrame Columns in Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Rename and Run Calculations on DataFrame Columns in Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Rename and Run Calculations on DataFrame Columns in Python Pandas

Discover an efficient method to rename and perform calculations on DataFrame columns in Python using Pandas, solving common AttributeError issues.
---
This video is based on the question https://stackoverflow.com/q/77324652/ asked by the user 'byc' ( https://stackoverflow.com/u/6722067/ ) and on the answer https://stackoverflow.com/a/77325063/ provided by the user 'RomanPerekhrest' ( https://stackoverflow.com/u/3185459/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: rename and run calculations based on column keywords

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Handling DataFrame Column Renaming and Calculations in Python

Having a large DataFrame can sometimes present unique challenges, especially when it comes to renaming columns and performing calculations based on specific column labels. In this guide, we'll explore how to effectively manage column operations in Pandas and troubleshoot common errors you might encounter along the way.

The Challenge

Imagine you have a DataFrame that looks something like this:

[[See Video to Reveal this Text or Code Snippet]]

You may want to rename the distance columns to convert kilometers to meters, and the cost columns to change values from USD to EUR. However, you run into an issue when executing this function:

[[See Video to Reveal this Text or Code Snippet]]

This function throws an error: AttributeError: 'str' object has no attribute 'str'. Let’s delve into the problem and find an effective solution.

Understanding the Error

At its core, the error arises because df.columns gives you a list of strings (column names), and you cannot use the .str accessor on a plain string. We need a different approach for renaming and calculating column values using Pandas.

The Solution

Step-by-Step Breakdown

Create a Renaming Map: We need a dictionary to store the current column names and their new names. This will help streamline the renaming process.

Iterate Over Columns: For each column, check if it contains "distance" or "costinUSD" and handle accordingly.

Perform Calculations and Renaming:

Multiply distance columns by 1000 to convert them to meters.

Multiply cost columns by 0.95 to convert them from USD to EUR.

Apply Renaming: Use Pandas' rename method to rename the columns based on our dictionary.

Here is how the revised function looks:

[[See Video to Reveal this Text or Code Snippet]]

Applying the Function

To use this function on your DataFrame, simply call:

[[See Video to Reveal this Text or Code Snippet]]

Example Output

After executing the above code, you should get an output similar to this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In conclusion, working with DataFrame column operations in Pandas can be straightforward if done correctly. Remember that string operations on columns require careful handling. Using the refactored function above simplifies the process of renaming columns and applying necessary calculations without running into issues like the AttributeError.

By following these steps, you can effectively manage DataFrames in Python, making your data handling tasks much easier!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]