Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть David Dunson (Duke University) - Robustifying Bayesian inference using coarsening

  • Post-Bayes seminar
  • 2025-04-10
  • 542
David Dunson (Duke University) - Robustifying Bayesian inference using coarsening
  • ok logo

Скачать David Dunson (Duke University) - Robustifying Bayesian inference using coarsening бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно David Dunson (Duke University) - Robustifying Bayesian inference using coarsening или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку David Dunson (Duke University) - Robustifying Bayesian inference using coarsening бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео David Dunson (Duke University) - Robustifying Bayesian inference using coarsening

Abstract: The standard approach to Bayesian inference is based on the assumption that the distribution of the data belongs to the chosen model class. However, even a small violation of this assumption can have a large impact on the outcome of a Bayesian procedure. We introduce a simple, coherent approach to Bayesian inference that improves robustness to perturbations from the model: rather than condition on the data exactly, one conditions on a neighborhood of the empirical distribution. When using neighborhoods based on relative entropy estimates, the resulting "coarsened" posterior can be approximated by simply tempering the likelihood—that is, by raising it to a fractional power. Thus, inference is often easily implemented with standard methods, and one can even obtain analytical solutions when using conjugate priors. Some theoretical properties are derived, and we illustrate the approach with real and simulated data, using mixture models, autoregressive models of unknown order, and variable selection in linear regression.

Mailing list subscription: https://tinyurl.com/postBayesSubscribe
Calendar subscription: https://tinyurl.com/postBayesCalendar
Website: https://postbayes.github.io/seminar/
Workshop: https://postbayes.github.io/workshop2...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]