Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Prof. Emtiyaz Khan - The Bayesian Learning Rule for Adaptive AI - Princeton AI Club

  • Princeton AI Club
  • 2022-07-04
  • 353
Prof. Emtiyaz Khan  - The Bayesian Learning Rule for Adaptive AI - Princeton AI Club
Princeton UniversityMachine Learning
  • ok logo

Скачать Prof. Emtiyaz Khan - The Bayesian Learning Rule for Adaptive AI - Princeton AI Club бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Prof. Emtiyaz Khan - The Bayesian Learning Rule for Adaptive AI - Princeton AI Club или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Prof. Emtiyaz Khan - The Bayesian Learning Rule for Adaptive AI - Princeton AI Club бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Prof. Emtiyaz Khan - The Bayesian Learning Rule for Adaptive AI - Princeton AI Club

Follow us for more events on Twitter at:   / princetonaiclub  
Website with next events at: https://aiclub.princeton.edu/

This talk has been given by Prof. Emtiyaz Khan on Zoom at Princeton AI Club on Monday 27th June 2022, 10:00 AM ET

Abstract of the talk:
Humans and animals have a natural ability to autonomously learn and quickly adapt to their surroundings. How can we design AI systems that do the same? In this talk, I will present Bayesian principles to bridge such gaps between humans and AI. I will show that a wide variety of machine-learning algorithms are instances of a single learning rule called the Bayesian learning rule. The rule unravels a dual perspective yielding new adaptive mechanisms for machine-learning-based AI systems. My hope is to convince the audience that Bayesian principles are indispensable for an AI that learns as efficiently as we do.

Reference: The Bayesian Learning Rule, (Preprint) M.E. Khan, H. Rue
https://arxiv.org/abs/2107.04562


Prof. Emtiyaz Khan: https://scholar.google.com/citations?...

Bio:
Emtiyaz Khan (also known as Emti) is a team leader at the RIKEN center for Advanced Intelligence Project (AIP) in Tokyo where he leads the Approximate Bayesian Inference Team. He is also an external professor at the Okinawa Institute of Science and Technology (OIST). Previously, he was a postdoc and then a scientist at Ecole Polytechnique Fédérale de Lausanne (EPFL), where he also taught two large machine learning courses and received a teaching award. He finished his PhD in machine learning from University of British Columbia in 2012. The main goal of Emti’s research is to understand the principles of learning from data and use them to develop algorithms that can learn like living beings. For more than a decade, his work has focused on developing Bayesian methods that could lead to such fundamental principles. The approximate Bayesian inference team now continues to use these principles, as well as derive new ones, to solve real-world problems.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]