Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Track Custom Metrics in a UserDefinedFunction in Apache Flink

  • vlogize
  • 2025-04-07
  • 22
How to Track Custom Metrics in a UserDefinedFunction in Apache Flink
  • ok logo

Скачать How to Track Custom Metrics in a UserDefinedFunction in Apache Flink бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Track Custom Metrics in a UserDefinedFunction in Apache Flink или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Track Custom Metrics in a UserDefinedFunction in Apache Flink бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Track Custom Metrics in a UserDefinedFunction in Apache Flink

Learn how to effectively track custom metrics in your custom ScalarFunction when working with Apache Flink, even without direct access to the runtime context.
---
This video is based on the question https://stackoverflow.com/q/76799927/ asked by the user 'user3822232' ( https://stackoverflow.com/u/3822232/ ) and on the answer https://stackoverflow.com/a/76807525/ provided by the user 'David Anderson' ( https://stackoverflow.com/u/2000823/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: In flink how to track a custom metric in a class that extends UserDefinedFunction

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Tracking Custom Metrics in Apache Flink User Defined Functions

As developers working with Apache Flink, we often create custom functions to handle specific data transformations or processing tasks. A common challenge that arises is how to effectively track custom metrics within these functions. In this article, we’ll explore how to implement a custom metric to track exceptions in a class that extends UserDefinedFunction, specifically when handling JSON data.

The Challenge

Imagine you have a custom function that processes a JSON array represented as a string. Your goal is to determine the size of this array but also want to track the number of exceptions that occur during the deserialization of this string. This is particularly useful for debugging and performance monitoring.

Here’s an example of a simple UserDefinedFunction that demonstrates this scenario:

[[See Video to Reveal this Text or Code Snippet]]

Once this UDF is registered in your Flink environment, you can leverage it in SQL queries such as:

[[See Video to Reveal this Text or Code Snippet]]

However, the primary hurdle here is how you can track the exceptions raised when an error occurs while deserializing the JSON string. The existing solution provides no direct access to the runtime context, which can complicate metrics collection in your function.

The Solution: Using the open() Method

To solve this problem, Flink provides a straightforward solution that involves implementing the open(FunctionContext context) method in your UserDefinedFunction. This method provides you access to a FunctionContext, and from this context, you can retrieve a metric group that will allow you to register and track custom metrics.

Step-by-Step Implementation

Extend the open() Method: By overriding the open() method of your UDF, you can access the FunctionContext.

[[See Video to Reveal this Text or Code Snippet]]

Define your Metric: Create a counter that will record the number of exceptions. You can do this at class level.

[[See Video to Reveal this Text or Code Snippet]]

Update the Metric on Exception: Modify the existing eval method to increment the counter whenever an exception occurs.

[[See Video to Reveal this Text or Code Snippet]]

Run your Function: After deploying your UDF, the metric you set up will track the number of exceptions during the processing of JSON strings.

Conclusion

Tracking custom metrics in Apache Flink’s custom functions is vital for maintaining robustness and performance in your data processing workflows. By utilizing the open() method in a UserDefinedFunction to access the metric context, you can efficiently keep track of the important metrics like exceptions, which ultimately aids in debugging and monitoring your Flink applications.

By implementing this solution, you're not only enhancing your application’s observability but also preparing for easier maintenance and troubleshooting down the road.

Now, you can take your Apache Flink UDFs to the next level by incorporating these metrics seamlessly into your functions. Embrace the power of monitoring and ensure your data pipeline runs smoothly!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • What is Apache Flink? #softwareengineering
    What is Apache Flink? #softwareengineering
    2 года назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]