Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 75_Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing

  • learningStar
  • 2024-12-05
  • 14
75_Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing
#PythonMachineLearning#python#pythonprogramming#pythoncoding#learntocode#coding#programming#pythonsyntax#syntaxerror#codingbasics#programming101#codingtutorial#codingcommunity#pythontips#codinghelp#codinglife#codeeveryday#pythontutorial#pythonforbeginners#pythonbasics#pythonarithmetic#pythonmath#pythonoperatorsScikitLearnTutorial#MachineLearningBasics#LearnWithPythonFirstMLModel#PythonForBeginners#MLWithScikitLearn
  • ok logo

Скачать 75_Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 75_Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 75_Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 75_Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing

Masterclass in Python: Starting Our Projects with Neural Networks & Data Importing
This title suggests an advanced, hands-on learning session designed for Python developers, focusing on neural networks and foundational steps for initiating machine learning projects. Here’s a detailed description of what the masterclass could encompass:

Course Overview
Dive into the fundamentals of neural networks while exploring practical Python-based workflows to start your projects effectively. This session is tailored for aspiring and experienced developers eager to build machine learning models from the ground up.

What You Will Learn

Introduction to Neural Networks

Understand the key concepts behind neural networks, including perceptrons, layers, and activation functions.
Explore different types of neural networks like feedforward, convolutional, and recurrent architectures.
Setting Up the Environment

Learn about the essential Python libraries such as TensorFlow, PyTorch, NumPy, and Pandas.
Configure your workspace for machine learning, including IDE setups and virtual environments.
Data Importing and Preprocessing

Discover techniques to import data from CSV, databases, and web APIs.
Handle missing data, normalization, scaling, and data augmentation.
Designing a Neural Network Project

Plan your neural network architecture, including input-output mapping and choosing appropriate layers.
Select suitable loss functions, optimization algorithms, and evaluation metrics.
Practical Application

Build a basic neural network using Python libraries.
Train, test, and validate your model while interpreting its performance metrics.
Advanced Topics

Introduction to hyperparameter tuning and techniques for model optimization.
Insights into deploying trained models in production environments.
Who Should Attend?
This masterclass is perfect for:

Developers with a foundational understanding of Python.
Data scientists and machine learning enthusiasts starting with neural networks.
Professionals looking to enhance their machine learning projects with better data handling and network design.
By the end of this course, participants will be equipped to import and preprocess datasets, design basic neural network architectures, and lay a solid foundation for their machine learning projects. This practical, step-by-step guide will ensure you’re ready to tackle real-world challenges with confidence.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]