Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas

  • vlogize
  • 2025-08-14
  • 0
How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas
How to get desired dataframe as output from groupby and value counts in pandaspythonpandasdataframe
  • ok logo

Скачать How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas

Learn how to manipulate your pandas dataframe effectively to achieve a custom output using groupby and value counts for better data analysis.
---
This video is based on the question https://stackoverflow.com/q/67744265/ asked by the user 'K C' ( https://stackoverflow.com/u/13940862/ ) and on the answer https://stackoverflow.com/a/67744333/ provided by the user 'perl' ( https://stackoverflow.com/u/6792743/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to get desired dataframe as output from groupby and value counts in pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Get Your Desired Dataframe from GroupBy and Value Counts in Pandas

When working with data in Python, especially using the pandas library, you might find yourself needing to query a dataframe and structure the results to meet specific requirements. In this article, we will explore how to transform our dataframe to get a desired outcome using groupby and value_counts.

Understanding the Problem

Imagine you have a dataframe containing information about train journeys between different stations and the type of passengers. Here’s an example of how this dataframe looks:

trainstartendpassenger_typerajdhanihowrahallahabadnormalhwh indb splhowrahallahabadtatkalhwh indb splallahabadhowrahnormalThe challenge here is to categorize the data based on the passenger_type and obtain a new dataframe that counts the journeys between stations along with how many of those journeys belong to each train type.

Desired Output

We want our output to look like this:

station1station2frequencyfreq by rajdhanifreq by hwh indbhowrahallahabad211allahabadhowrah100Step-by-Step Solution

Step 1: Grouping and Counting

To achieve this result, we can leverage the value_counts() function available in pandas. Here’s how you can implement the solution:

Select Columns: Focus on relevant columns, which are start, end, and train.

Apply Value Counts: Use the value_counts() method to count occurrences of each journey combination.

Unstack the Data: Convert the results into a DataFrame format that is easy to work with and fill missing values with zero.

Add Prefix to Columns: Label the columns appropriately to identify frequency by train types.

Calculate Frequency: Add up the counts to obtain the overall frequency of journeys.

Step 2: Implementing the Code

Here’s how you can implement the solution in Python:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Output

The output from the above code will provide you with a structured dataframe, including the needed frequency counts by each train type.

Additionally, if you want a simplified view focusing only on the starts, ends, and frequencies, you can extract those specific columns:

[[See Video to Reveal this Text or Code Snippet]]

This will yield a cleaner dataframe like this:

station1station2frequencyhowrahallahabad2allahabadhowrah1Conclusion

In conclusion, manipulating dataframes using pandas can be straightforward once you understand the necessary functions. By applying groupby and value_counts, you can effectively categorize and count data according to multiple criteria, making your data analysis process much smoother.

Happy coding with pandas! If you have any questions or need further assistance, feel free to ask!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]