Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize

  • vlogize
  • 2025-09-28
  • 0
Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize
Changing nested json files into a data frame using pythonpythonjsonlistlist comprehension
  • ok logo

Скачать Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize

Learn how to convert nested JSON files into a DataFrame using Python's `json_normalize` method. This guide simplifies the complex process for beginners!
---
This video is based on the question https://stackoverflow.com/q/63555503/ asked by the user 'user86907' ( https://stackoverflow.com/u/12746134/ ) and on the answer https://stackoverflow.com/a/63555985/ provided by the user 'Deepak Tripathi' ( https://stackoverflow.com/u/11622508/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Changing nested json files into a data frame using python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Converting Nested JSON Files into a DataFrame: A Step-by-Step Guide Using Python json_normalize

Dealing with APIs can sometimes feel overwhelming, especially when it comes to the data they return. For example, when you're working with nested JSON structures, extracting relevant information to create a DataFrame can be quite challenging. This post will guide you through the process of converting a nested JSON file (like the one from LinkedIn) into a readable DataFrame format using Python's pandas library.

Understanding the Problem

You may encounter a JSON structure that contains deeply nested data. For instance, API responses from platforms like LinkedIn often return data in a nested format. Here's a simplified version of what such a JSON might look like:

[[See Video to Reveal this Text or Code Snippet]]

The challenge lies in the nested structure of the data, specifically within the elements array and its sub-objects. Our goal is to flatten this structure to create a DataFrame that is easier to work with and can eventually be saved as a CSV file.

The Solution: Using json_normalize

To tackle this problem, we can use the json_normalize function from the pandas library. This built-in method helps flatten the JSON into a more manageable structure. Below are the steps to achieve that:

Step 1: Install the Required Libraries

Make sure you have pandas installed in your Python environment. You can install it using pip:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Importing Libraries

Start your Python script or Jupyter Notebook by importing pandas:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Prepare Your JSON Data

Next, you'll need to define your nested data. For simplicity, you can copy the relevant portion of the JSON structure we discussed earlier:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Using json_normalize to Flatten the JSON

Now, you're ready to flatten the JSON structure using json_normalize:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Saving to CSV

Once you have your DataFrame ready, you can easily save it to a CSV file:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, you can efficiently convert nested JSON data into a structured DataFrame in Python. The json_normalize function is particularly useful for beginners looking to handle complex JSON data with ease. Don’t hesitate to experiment with your JSON structures and explore the powerful capabilities of pandas!

Now you can analyze your data, visualize it, or even save it in formats that are more convenient for your future needs. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]