Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Atom level enzyme active site scaffolding using RFdiffusion2 | Jason Yim & Woody Ahern

  • Valence Labs
  • 2025-05-18
  • 1571
Atom level enzyme active site scaffolding using RFdiffusion2 | Jason Yim & Woody Ahern
  • ok logo

Скачать Atom level enzyme active site scaffolding using RFdiffusion2 | Jason Yim & Woody Ahern бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Atom level enzyme active site scaffolding using RFdiffusion2 | Jason Yim & Woody Ahern или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Atom level enzyme active site scaffolding using RFdiffusion2 | Jason Yim & Woody Ahern бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Atom level enzyme active site scaffolding using RFdiffusion2 | Jason Yim & Woody Ahern

Portal is the home of the AI for drug discovery community. Join for more details on this talk and to connect with the speakers: https://portal.valencelabs.com/starkl...

Paper: Atom level enzyme active site scaffolding using RFdiffusion2

https://www.biorxiv.org/content/10.11...

Abstract: De novo enzyme design starts from ideal active site descriptions consisting of constellations of catalytic residue functional groups around reaction transition state(s), and seeks to generate protein structures that can accurately hold the site in place. Highly active enzymes have been designed starting from such descriptions using the generative AI method RFdiffusion [1–3], but there are two current methodological limitations. First, the geometry of the active site can only be specified at the residue level, so for each catalytic residue functional group placed around the reaction transition state, the possible locations of the residue backbone must be enumerated by building side chain rotamers back from the functional group. Second, the location of the catalytic residues along the sequence must be specified in advance, which considerably limits the space of solutions which can be sampled. Here we describe a new deep generative method, Rosetta Fold diffusion 2 (RFdiffusion2), that solves both problems, enabling enzymes to be designed from sequence agnostic descriptions of functional group locations without inverse rotamer generation. We first evaluate RFdiffusion2 on an in silico enzyme design benchmark of 41 diverse active sites and find that it is able to successfully build proteins scaffolding all 41 sites, compared to 16/41 with prior state-of-the-art deep learning methods. Next, we design enzymes around three diverse catalytic sites and characterize the designs experimentally; in each case we identify active catalysts in testing less than 96 sequences. RFdiffusion2 demonstrates the potential of atomic resolution generative models for the design of de novo enzymes directly from their reaction mechanisms.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]