Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models

  • Talent Navigator
  • 2025-06-17
  • 3
L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models
ai vs machine learningdifference between ai and mldata science explainedmachine learning tutorialartificial intelligence basicsdata science for beginnerssupervised vs unsupervisedreinforcement learning basicsdeep learning vs machine learninglinear regression tutorialp value explainedl1 lasso regularizationmodel overfitting solutionsmachine learning typesdata science applicationsai conceptsml conceptsdeep learning basicslassoridgeregression
  • ok logo

Скачать L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models

Exploring L1 and L2 Regularization Techniques to Prevent Overfitting in Machine Learning Models.

[00:07](   • Exploring L1 and L2 Regularization Techniq...  ) L1 and L2 regularization techniques manage model complexity.
L1 regularization, or Lasso, uses the absolute value of coefficients to minimize error and perform feature selection.
L2 regularization, or Ridge regression, squares the coefficients in the cost function to prevent overfitting while shrinking them.

[00:51](   • Exploring L1 and L2 Regularization Techniq...  ) L2 regularization helps prevent overfitting in regression models.
L2 regularization, or ridge regression, adjusts the cost function by adding a penalty for large weights.
To combat overfitting, techniques like cross-validation and feature reduction are employed alongside regularization methods.

[01:32](   • Exploring L1 and L2 Regularization Techniq...  ) Regularization penalizes complexity to improve model generalization.
The regularization term adds a penalty to the loss function to prevent overfitting by controlling model complexity.
Lambda, a hyperparameter, adjusts the penalty; high lambda values increase regularization, while zero makes it equivalent to ordinary least squares.

[02:13](   • Exploring L1 and L2 Regularization Techniq...  ) Ridge regression reduces weights but is sensitive to outliers.
Ridge regularization keeps weights small without driving them to zero, unlike L1 regularization.
Outliers significantly inflate error due to squaring in ridge regression, impacting overall model robustness.

[02:51](   • Exploring L1 and L2 Regularization Techniq...  ) R square measures the closeness of data to a regression line.
R square, or coefficient of determination, quantifies how much of the variation in the response variable is explained by the linear model.

[03:31](   • Exploring L1 and L2 Regularization Techniq...  ) R-squared indicates model quality and data fit.
A higher R-squared value means a better fit of the model to the data and explains more variability of the response variable.
The formula R-squared = 1 - (SS regression / SS total) reflects how well independent variables explain the response variable.

[04:08](   • Exploring L1 and L2 Regularization Techniq...  ) Adjusted R-squared provides a better model evaluation than R-squared.
Adding independent variables to a model always increases the R-squared value, even if they are irrelevant.
Adjusted R-squared penalizes the R-squared value for including non-informative variables, offering a more accurate assessment of model performance.

[04:46](   • Exploring L1 and L2 Regularization Techniq...  ) Mean Square Error measures the accuracy of regression predictions.
MSE quantifies the distance between actual data points and the regression line by squaring the differences.
*L1 and L2 Regularization*
**L1 Regularization (Lasso)**: Utilizes the absolute value of coefficients in its cost function, which can lead to some coefficients becoming exactly zero, effectively excluding certain features from the model. This method helps in feature selection and managing overfitting.

**L2 Regularization (Ridge)**: Incorporates the square of coefficients in its cost function. It penalizes larger coefficients but does not eliminate them, thus ensuring that all features remain in the model while preventing overfitting.
**Overfitting Mitigation**: Both regularization techniques aim to address the issue of overfitting by balancing model complexity and performance on unseen data through methods like cross-validation and feature reduction.

*Understanding R-Squared*

**Definition**: R-squared, or the coefficient of determination, measures how well the independent variables explain the variability of the dependent variable in a regression model, usually expressed as a percentage ranging from 0% to 100%.

**Limitations**: A significant issue with R-squared is that it can falsely indicate a better model fit simply by adding more independent variables, regardless of their relevance or impact. This can lead to misleading conclusions about model performance.

**Adjusted R-Squared**: To overcome the limitations of R-squared, adjusted R-squared is used. This metric accounts for the number of predictors in the model, providing a more accurate measure of model quality by penalizing the inclusion of non-informative variables.

*Mean Square Error (MSE)*

**Definition**: Mean Square Error quantifies how close the predicted values are to the actual values by averaging the squares of the differences between them. It serves as a key metric for evaluating the performance of regression models.

**Calculation**: MSE is calculated by taking the average of the squared differences between the true values and the predicted values. This formulation emphasizes larger errors due to the squaring of the differences.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]