Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project

  • JP INFOTECH PROJECTS
  • 2021-02-19
  • 212
What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project
  • ok logo

Скачать What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project

What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text | Java Project.
To buy this project in ONLINE, Contact:
🔗Email: [email protected],
🌐Website: https://www.jpinfotech.org

🚀IEEE Base Paper Title: What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text.
💡Implementation Code: JAVA.
🖥️Frontend: JSP, HTML, CSS, JavaScript.
🛢️Database: MYSQL.
🛠️IDE Tool: NETBEANS 8.2.
💰Cost (In Indian Rupees): Rs.3000/

📘IEEE Project Abstract:
Twitter has become one of the most popular sources of real-time information about events happening in the world. Because of the overwhelming amount of information continuously flowing through the Twitter environment, topic derivation is essential. It indeed plays a valuable role in a variety of Twitter-based applications, including content recommendations, news summarization, market analysis, etc. Topic derivation methods are typically based on semantic features of tweet contents. Because tweets are short by nature, such methods suffer from data sparsity. To alleviate this problem, this paper proposes a topic derivation method that incorporates tweet text similarity and interactions measures. Besides the tweet contents, the approach takes into account several types of interactions amongst tweets: tweets which mention the same people, replies and retweets. Topic derivation is done through a two-step matrix factorization process. We conducted a number of experiments on several Twitter datasets to reveal both the individual and integrated effects of the various features being considered. Our experimental results demonstrate that the proposed method outperforms other advanced topic derivation methods.

📚REFERENCE:
Robertus Nugroho, Jian Yang, Weiliang Zhao, Cecile Paris and Surya Nepal, “What and With Whom? Identifying Topics in Twitter Through Both Interactions and Text”, IEEE 2020.

🏷️tags:
#javaprojects #ieeeprojects #finalyearprojects #javaprojectsforbeginners #javaprojectswithsourcecode #computerscienceproject #java #javaproject #finalyearprojectideas #academicprojects #majorproject #finalyearproject #ieeeproject #academicproject

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]