Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Class 12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths

  • HAPPLE TUTIONS
  • 2020-04-13
  • 79
Class  12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths
application of derivativesapplication of derivatives class 12ncertcbseMaths class 12application of derivatives class 12 exercise 6.1ncert solutions for class 12 maths application of derivatives exercise 6.1class 12AOD
  • ok logo

Скачать Class 12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Class 12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Class 12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Class 12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths

Class 12(NCERT) | Application of Derivatives exercise 6.1(Full) Solutions| CBSE Board | Maths
1. Find the rate of change of the area of a circle with respect to its radius r when (a) r = 3 cm (b) r = 4 cm
2. The volume of a cube is increasing at the rate of 8 cm^3/s. How fast is the
surface area increasing when the length of an edge is 12 cm?
3. The radius of a circle is increasing uniformly at the rate of 3 cm/s. Find the rate at which the area of the circle is increasing when the radius is 10 cm.
4. An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long?
5. A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
6. The radius of a circle is increasing at the rate of 0.7 cm/s. What is the rate of increase of its circumference?
7. The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8cm and y = 6cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.
8. A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm.
9.A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
10. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall ?
11. A particle moves along the curve 6y = x3 +2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.
12. The radius of an air bubble is increasing at the rate of 1/2 cm/s. At what rate is the volume of the bubble increasing when the radius is 1 cm?

13. A balloon, which always remains spherical, has a variable diameter
3/2(2x+1). Find the rate of change of its volume with respect to x.
14. Sand is pouring from a pipe at the rate of 12 cm^3/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
15.The total cost C (x) in Rupees associated with the production of x units of an item is given by
C (x) = 0.007x^3– 0.003x^2 + 15x + 4000.
Find the marginal cost when 17 units are produced.
16.The total revenue in Rupees received from the sale of x units of a product is
given by
R (x) = 13x^2+ 26x + 15.
Find the marginal revenue when x = 7.
Choose the correct answer in the Exercises 17 and 18.
17.The rate of change of the area of a circle with respect to its radius r at r = 6 cm is
(A) 10π (B) 12π (C) 8π (D) 11π
18.The total revenue in Rupees received from the sale of x units of a product is given by
R(x) = 3x^2+ 36x + 5. The marginal revenue, when x = 15 is
(A) 116 (B) 96 (C) 90 (D) 126
19. application of derivatives class 12
20. application of derivatives class 12 revision
21 .application of derivatives class 12 ncert
22. application of derivatives class 12 exercise 6.1
23. ncert solutions for class 12 maths application of derivatives exercise 6.1
24. application of derivatives class 12 ncert solutions exercise 6.1
#cbse
#ncert
#ApplicationOfDerivatives

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]