Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to GroupBy and Count Unique Values in Pandas Based on Criteria

  • vlogize
  • 2025-10-01
  • 0
How to GroupBy and Count Unique Values in Pandas Based on Criteria
Is there a way in pandas to groupby and then count unique where another column has a specified valuepythonpandasdataframepandas groupbyunique
  • ok logo

Скачать How to GroupBy and Count Unique Values in Pandas Based on Criteria бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to GroupBy and Count Unique Values in Pandas Based on Criteria или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to GroupBy and Count Unique Values in Pandas Based on Criteria бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to GroupBy and Count Unique Values in Pandas Based on Criteria

Discover an effective way to leverage Pandas for counting unique entries based on specific criteria, streamlining your data analysis.
---
This video is based on the question https://stackoverflow.com/q/63886561/ asked by the user 'greenstamp' ( https://stackoverflow.com/u/14275315/ ) and on the answer https://stackoverflow.com/a/63886831/ provided by the user 'Chris' ( https://stackoverflow.com/u/4718350/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Is there a way in pandas to groupby and then count unique where another column has a specified value?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding GroupBy and Count Unique in Pandas

When working with data in Python, especially in data analysis, you often need to group data and perform counts based on certain criteria. In this guide, we will explore how to use the pandas library to groupby a dataframe and then count unique entries while considering another column with specified values. We'll break this down step-by-step, using a practical example to clarify the process.

The Problem Scenario

Imagine you have a pandas DataFrame containing various columns such as country, time_bucket, category, and id. The category can either be staff or student. The objective is to determine how many unique staff and student entries are present within each country at specific time intervals, and to present this information in new columns.

Initial DataFrame

Here’s an example of the initial DataFrame data you might be working with:

[[See Video to Reveal this Text or Code Snippet]]

This setup results in:

[[See Video to Reveal this Text or Code Snippet]]

Objective

You want to extend this DataFrame to include the count of unique staff and student IDs for each combination of country and time interval. The desired result should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Solution Breakdown

To achieve this output, follow these steps:

Step 1: Count Unique IDs by Category

First, you should group the data by time_bucket, country, and category, and then count unique id entries:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Pivot the DataFrame

Next, pivot the DataFrame to rearrange the counts based on the category so that you will have separate columns for staff and student. Here's how you do that:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Adjust Columns for Final Output

Since the pivot process will yield multi-level columns, we can rename those for clarity. Finally, merge these results back into a singular DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This entire series of operations transforms your DataFrame to reflect the unique counts for both staff and students.

Conclusion

By using pandas effectively, you're able to manipulate your DataFrame to answer complex queries with relative ease. The groupby and pivot_table methods become invaluable tools for organizing and analyzing your data.

With this approach, you not only identify how many unique staff and students exist but also segment this information efficiently across different categories and timeframes. Whether you are analyzing educational data, employee records, or any similar datasets, this method will enhance your data analysis workflow.

Now that you have this guide, implementing and manipulating similar DataFrames should be a breeze. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]