Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Summing Rows in a numpy Matrix

  • vlogize
  • 2025-10-02
  • 0
Efficiently Summing Rows in a numpy Matrix
selective row sum matrix in numpypythonnumpy
  • ok logo

Скачать Efficiently Summing Rows in a numpy Matrix бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Summing Rows in a numpy Matrix или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Summing Rows in a numpy Matrix бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Summing Rows in a numpy Matrix

Discover fancy `numpy` methods to efficiently sum specified rows of a matrix, ensuring performance even with large datasets.
---
This video is based on the question https://stackoverflow.com/q/62828885/ asked by the user 'MRm' ( https://stackoverflow.com/u/10331422/ ) and on the answer https://stackoverflow.com/a/62829029/ provided by the user 'Divakar' ( https://stackoverflow.com/u/3293881/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: selective row sum matrix in numpy

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Summing Rows in a numpy Matrix: A Comprehensive Guide

Are you working with large datasets in Python and looking for an efficient way to sum rows of a matrix? If your task involves a situation similar to summing rows of a matrix based on indices contained in another matrix, then you’re in the right place! In this post, we will explore how to achieve this using numpy, a powerful library for numerical computations in Python. Let’s dive into the problem and its solutions.

The Problem: Selective Row Sum with Numpy

Imagine you have a matrix M with dimensions R x C, where R is the number of rows and C is the number of columns. You also have another matrix E of dimensions R x a that contains indices corresponding to the rows of matrix M. Note that some elements in E may be -1, which we will use as padding.

Example:

[[See Video to Reveal this Text or Code Snippet]]

From the above matrices, we want to generate a new matrix P where each row P[i,:] contains the sum of the rows of M indexed by E[i,:]. In simpler terms, we aim to compute:

For row 0: M[0,:] + M[1,:]

For row 1: M[2,:]

For row 2: M[0,:]

The desired output would be:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Efficient Methods in Numpy

Method 1: Indexing and Subtracting for -1s

One efficient way to perform this operation is to use indexing on matrix M followed by subtracting the contributions made by -1 indices.

Code:

[[See Video to Reveal this Text or Code Snippet]]

Method 2: Padding with Zeros

Another clean solution can be to pad the end of matrix M with zeros. This way, the -1 indices will point to the padded area, effectively not contributing to the sum.

Code:

[[See Video to Reveal this Text or Code Snippet]]

Method 3: Handling -1 Efficiently

If each row of E contains at most one -1, we can optimize the approach even further.

Code:

[[See Video to Reveal this Text or Code Snippet]]

Method 4: Tensor Multiplication

For a more advanced approach, we can leverage tensor multiplication using einsum. This is a powerful tool in numpy for performing various tensor operations and can lead to concise solutions.

Code:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we've explored the problem of selectively summing rows from one matrix based on indices specified in another matrix using numpy. By utilizing various efficient methods—including indexing, zero padding, targeted subtraction, and tensor multiplication—we can optimize operations even for larger matrices.

Feel free to try out these methods in your own Python projects, and let me know how they work for you! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]