Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data

  • vlogize
  • 2025-04-04
  • 8
Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data
Pandas.read_csv() Decoding Error tokenizing data because of a comma in datapythonpandascsvdecoding
  • ok logo

Скачать Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data

Learn how to tackle decoding errors in Pandas when reading CSV files with commas in the data. This guide offers practical solutions for maintaining data integrity while importing your CSV files.
---
This video is based on the question https://stackoverflow.com/q/72817370/ asked by the user 'Rupert Riddle' ( https://stackoverflow.com/u/10637048/ ) and on the answer https://stackoverflow.com/a/72817691/ provided by the user 'GodWin1100' ( https://stackoverflow.com/u/10995550/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas.read_csv() Decoding Error tokenizing data because of a comma in data

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Solving the Pandas.read_csv() Decoding Error: Handling Commas in CSV Data

CSV files are a popular format for storing tabular data, but they can present challenges when certain elements within the data contain commas. This can lead to decoding errors when using Pandas to read the file. In this guide, we will discuss a common issue: how to address the Pandas.read_csv() decoding error caused by commas in row values, and we will provide a step-by-step solution for it.

Understanding the Problem

When attempting to read a CSV file using Pandas, you might encounter a decoding error, especially when the CSV contains commas within the data fields. For instance, a row of data might look like this:

[[See Video to Reveal this Text or Code Snippet]]

In this example, the entry [81, 65] is problematic because it contains a comma, which can be mistakenly interpreted by Pandas as the start of a new column. This misunderstanding leads to an error, as Pandas expects a consistent structure in the CSV file.

Key Considerations

Avoiding Data Loss: Skipping rows using options like error_bad_lines=False is not ideal if your data contains valuable information that you cannot afford to lose.

Decoding Errors: These typically arise from misinterpretation of the file’s structure due to unusual characters, such as commas within values.

Proposed Solution

To resolve the decoding error when loading a CSV file, you can leverage a combination of regular expressions and Python's engine in Pandas. Below are the steps to implement the solution effectively.

Step 1: Preparation

Ensure your CSV file is correctly formatted. Your file might look something like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Use the Correct Syntax to Read CSV

Use the following command to read your CSV file effectively:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Syntax

sep=r",(?![^[]*])": This uses a regular expression to specify that a comma should only be treated as a separator if it is not followed by a closing bracket. This helps maintain the integrity of data entries like [81, 65].

engine="python": By specifying the Python engine, we enable the use of regular expressions for the separator, although it may use more memory and be slower than the C engine.

Step 3: Verify Your DataFrame

After executing the code above, check the resulting DataFrame to ensure that all data has been read correctly:

```

123456780'true'47'y''descriptive_evidence''n''true'66[81, 65]```
This output shows a successful import where all values are intact, including the complex entry [81, 65].

Conclusion

Handling commas within row values in CSV files can be a tricky task, but with the right approach in Pandas, you can successfully read your datasets without losing critical information. By using regular expressions to define your separator and leveraging the Python engine, you can work around potential decoding errors effectively.

By following the steps outlined in this guide, you should be well-equipped to manage your CSV data, no matter how complex it might be. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]