Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Holden Karau | Improving PySpark Performance Spark performance beyond the JVM

  • PyData
  • 2016-10-24
  • 1022
Holden Karau | Improving PySpark Performance Spark performance beyond the JVM
  • ok logo

Скачать Holden Karau | Improving PySpark Performance Spark performance beyond the JVM бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Holden Karau | Improving PySpark Performance Spark performance beyond the JVM или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Holden Karau | Improving PySpark Performance Spark performance beyond the JVM бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Holden Karau | Improving PySpark Performance Spark performance beyond the JVM

PyData DC 2016

This talk assumes you have a basic understanding of Spark (if not check out one of the intro videos on youtube - http://bit.ly/hkPySpark ) and takes us beyond the standard intro to explore what makes PySpark fast and how to best scale our PySpark jobs. If you are using Python and Spark together and want to get faster jobs - this is the talk for you.

This talk covers a number of important topics for making scalable Apache Spark programs - from RDD re-use to considerations for working with Key/Value data, why avoiding groupByKey is important and more. We also include Python specific considerations, like the difference between DataFrames and traditional RDDs with Python. Looking at Spark 2.0; we examine how to mix functional transformations with relational queries for performance using the new (to PySpark) Dataset API. We also explore some tricks to intermix Python and JVM code for cases where the performance overhead is too high. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]