Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Webinar | Physics-Informed Machine Learning for Seismic Modeling and Inversion.

  • KFUPM Institute for Knowledge Exchange
  • 2023-02-12
  • 466
Webinar | Physics-Informed Machine Learning for Seismic Modeling and Inversion.
  • ok logo

Скачать Webinar | Physics-Informed Machine Learning for Seismic Modeling and Inversion. бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Webinar | Physics-Informed Machine Learning for Seismic Modeling and Inversion. или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Webinar | Physics-Informed Machine Learning for Seismic Modeling and Inversion. бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Webinar | Physics-Informed Machine Learning for Seismic Modeling and Inversion.

Organized By
SDAIA-KFUPM Joint Research Center for AI

Abstract:
Machine learning is fast emerging as a potential disruptive tool to tackle longstanding research problems across the sciences. This is mainly driven by its ability to find complex patterns in large datasets, often without the need for feature extraction or engineering. It comes as no surprise that geophysicists, like domain experts from other scientific disciplines, are starting to find value in machine learning methods. In particular, recent advances in the field of Scientific Machine Learning demonstrate its largely untapped potential for longstanding challenges in the field of computational geophysics. In this talk, I will summarize our efforts on the use of physics-informed neural networks (PINNs) for solving seismic modeling and inverse problems. In addition to addressing the computational bottleneck associated with conventional algorithms, I will demonstrate how PINNs allow the freedom to incorporate complete physics of wave propagation instead of relying on approximations. I will also discuss the applicability of PINNs to develop real-time microseismic monitoring solutions for assessing and mitigating induced seismicity hazard due to anthropogenic activities such as underground mining, hydraulic fracturing, and CO2 geological sequestration. 



.


Speaker:
Dr. Umair bin Waheed
Umair bin Waheed is an Associate Professor of Geophysics at King Fahd University of Petroleum and Minerals (KFUPM). His research interests are broadly in the area of computational geosciences. Umair graduated from KAUST with a Ph.D. in Earth Science & Engineering in 2015. Prior to joining KFUPM in 2017, he was a postdoctoral fellow at the Department of Geosciences, Princeton University, and a Writing in Science and Engineering fellow at the Princeton Writing Program. Umair received the early career researcher award at KFUPM in 2022. He is the 2023 SEG Honorary Lecturer on the topic of physics-informed machine learning applied to geophysics



​


For more information about this event or the upcoming, visit our website:
https://kikx.kfupm.edu.sa
Or follow our social media accounts:
  / kfupm_kikx  
  / kfup.  .
https://t.me/kfupm_kikx

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]