Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Supervised learning and its use cases in telecom

  • itelcotech
  • 2025-01-16
  • 62
Supervised learning and its use cases in telecom
  • ok logo

Скачать Supervised learning and its use cases in telecom бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Supervised learning and its use cases in telecom или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Supervised learning and its use cases in telecom бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Supervised learning and its use cases in telecom

** Part of a “AI & Telecom” Course - https://www.itelcotech.com/learningpa...

Supervised Machine Learning in Telecom: Real-World Applications

Supervised learning, a key type of machine learning, is all about making predictions based on labeled data — where we know the input and the output. Let’s dive into how this works in telecom using a practical example.
Imagine a 4G network, where we analyze how changes in the Signal-to-Interference-and-Noise Ratio (SINR) — or signal quality — impact throughput (user data speed). By feeding large volumes of historical network data into the system (spanning many sites, cells, and months), the machine learns a correlation between SINR (input) and throughput (output).
This results in a mathematical equation derived by the machine, enabling us to predict throughput based on SINR. When visualized, it often shows a linear relationship — a regression problem, where continuous changes in SINR lead to continuous changes in throughput.
But supervised learning isn’t just about regression. It also tackles classification problems:
• Example 1: Predicting customer churn based on factors like call drops, data speed, or billing issues. Using inputs, the model classifies customers as likely to churn (red) or not (green).
• Example 2: Identifying network issues by clustering poor SINR or signal quality areas, flagging them for targeted improvements.
Other powerful applications of supervised learning in telecom include:
1. Traffic Prediction: Forecasting traffic patterns for specific sites or regions based on past data to anticipate peaks and optimize resources.
2. Quality and Throughput Insights for New Deployments: Estimating how network quality will impact throughput in new cities, enabling realistic customer plans.
3. Network Problem Detection: Classifying areas with poor signal levels as network problem zones for actionable improvements.
Supervised machine learning empowers telecom networks to be smarter, more predictive, and customer-focused. Stay tuned as we explore the mathematics and techniques behind these predictions in future updates!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]