Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Decoder-only inference: a step-by-step deep dive

  • Julien Simon
  • 2025-01-10
  • 30784
Decoder-only inference: a step-by-step deep dive
aillmslmdeep learningdata sciencetransformersnatural language processingnlp
  • ok logo

Скачать Decoder-only inference: a step-by-step deep dive бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Decoder-only inference: a step-by-step deep dive или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Decoder-only inference: a step-by-step deep dive бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Decoder-only inference: a step-by-step deep dive

In this deep dive video, we explore the step-by-step process of transformer inference for text generation, with a focus on decoder-only architectures like those used in GPT models. The step-by-step breakdown covers self-attention, KV caching, and multi-head attention (MHA), culminating in an in-depth look at the advanced Multi-Head Latent Attention (MLA). You'll learn how MLA improves efficiency by reducing memory usage and accelerating inference without compromising accuracy. Finally, you'll learn how attention outputs are used for token generation.

⭐️⭐️⭐️ Don't forget to subscribe to be notified of future videos. You can become a channel member and enjoy exclusive perks: details at    / @juliensimonfr  
You can also follow me on Medium at   / julsimon   or Substack at https://julsimon.substack.com. ⭐️⭐️⭐️

In this deep dive video, we explore the step-by-step process of transformer inference for text generation, with a focus on decoder-only architectures like those used in GPT models. We delve into the mechanics behind their operation, starting with an analysis of the self-attention mechanism, which serves as the foundational building block for these models.

The video begins by explaining how self-attention is computed, including the role of queries, keys, and values in capturing contextual relationships within a sequence of tokens. We then examine the significance of the KV cache in optimizing performance by avoiding redundant computations during token generation.

The discussion progresses to multi-head attention (MHA), a key innovation in transformers that enables the model to capture diverse patterns in data through parallel attention heads. We address the memory bottlenecks associated with MHA and the techniques employed to mitigate them.

We also introduce multi-head latent attention (MLA), a cutting-edge alternative to traditional MHA. MLA significantly reduces memory usage by caching a low-rank representation of key and value matrices, enabling faster and more efficient inference. This breakthrough is explained in detail, alongside comparisons to MHA in terms of performance and accuracy.

Finally, the video walks through the process of translating attention outputs into coherent text generation. This includes the role of projection layers, softmax normalization, and decoding strategies like greedy search and top-k/top-p sampling.

This comprehensive exploration provides a detailed understanding of the inference process, emphasizing practical challenges and the state-of-the-art solutions that address them. Whether you're a researcher, engineer, or AI enthusiast, this video offers valuable insights into the mechanics of generative language models.

Slides: https://fr.slideshare.net/slideshow/d...
"Deep dive: better Attention Layers":    • Deep dive - Better Attention layers for Tr...  

00:00 Introduction
01:20 The architecture of decoder-only transformers
05:10 The self-attention formula
05:51 Computing self-attention step-by-step
14:50 The role of the KV cache
18:25 Multi-head attention (MHA)
20:40 Computing multi-head attention step-by-step
23:20 The memory bottleneck in multi-head attention
25:15 Multi-head latent attention (MLA)
28:30 Computing multi-head latent attention step-by-step
35:00 From attention outputs to text generation
41:00 Conclusion

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]