Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть V-Learning: Simple, Efficient, Decentralized Algorithm for Multiagent RL

  • Simons Institute for the Theory of Computing
  • 2022-05-02
  • 2979
V-Learning: Simple, Efficient, Decentralized Algorithm for Multiagent RL
Simons Institutetheoretical computer scienceUC BerkeleyComputer ScienceTheory of ComputationTheory of ComputingChi JinMulti-Agent Reinforcement Learning and Bandit Learning
  • ok logo

Скачать V-Learning: Simple, Efficient, Decentralized Algorithm for Multiagent RL бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно V-Learning: Simple, Efficient, Decentralized Algorithm for Multiagent RL или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку V-Learning: Simple, Efficient, Decentralized Algorithm for Multiagent RL бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео V-Learning: Simple, Efficient, Decentralized Algorithm for Multiagent RL

Chi Jin (Princeton University)
https://simons.berkeley.edu/talks/v-l...
Multi-Agent Reinforcement Learning and Bandit Learning

A major challenge of multiagent reinforcement learning (MARL) is the curse of multiagents, where the size of the joint action space scales exponentially with the number of agents. This remains to be a bottleneck for designing efficient MARL algorithms even in a basic scenario with finitely many states and actions. This paper resolves this challenge for the model of episodic Markov games. We design a new class of fully decentralized algorithms---V-learning, which provably learns Nash equilibria (in the two-player zero-sum setting), correlated equilibria and coarse correlated equilibria (in the multiplayer general-sum setting) in a number of samples that only scales with max_i Ai, where Ai is the number of actions for the ith player. This is in sharp contrast to the size of the joint action space which is \prod_i Ai. V-learning (in its basic form) is a new class of single-agent RL algorithms that convert any adversarial bandit algorithm with suitable regret guarantees into a RL algorithm. Similar to the classical Q-learning algorithm, it performs incremental updates to the value functions. Different from Q-learning, it only maintains the estimates of V-values instead of Q-values. This key difference allows V-learning to achieve the claimed guarantees in the MARL setting by simply letting all agents run V-learning independently.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]