Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The Real Numbers: 10 Axioms That Built All of Mathematics

  • ScienceHubAndTech
  • 2026-01-30
  • 73
The Real Numbers: 10 Axioms That Built All of Mathematics
real analysisreal numbersaxioms
  • ok logo

Скачать The Real Numbers: 10 Axioms That Built All of Mathematics бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The Real Numbers: 10 Axioms That Built All of Mathematics или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The Real Numbers: 10 Axioms That Built All of Mathematics бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The Real Numbers: 10 Axioms That Built All of Mathematics

Real numbers aren't just decimals. In this visual introduction to Real Analysis (based on Apostol), we build the Real Number System ℝ from exactly 10 axioms. Discover why ℚ has "gaps," why √2 requires the Completeness Axiom, and how these rules build all of calculus.

WHAT YOU'LL LEARN:

The 5 Field Axioms — Why addition and multiplication work the way they do The 4 Order Axioms — How "less than" actually works mathematically
The Completeness Axiom — The single property that separates ℝ from ℚ
Why √2 is irrational — A visual proof by contradiction
The Archimedean Property — Why no number is "infinitely large"
Prime Factorization — Existence AND uniqueness (Fundamental Theorem of Arithmetic)


CHAPTERS:
0:00 — Introduction: What are real numbers, really?
0:52 — The Field Axioms (1-5): Arithmetic's Foundation
1:27 — Axiom 1: Commutativity
1:52 — Axiom 2: Associativity
2:11 — Axiom 3: Distributive Law
2:41 — Axiom 4: Subtraction and Zero
3:09 — Axiom 5: Division and One
3:58 — The Order Axioms (6-9): Putting Numbers in Line
4:13 — Axiom 6: Trichotomy
4:28 — Axiom 7-8: Order Preservation
4:55 — Axiom 9: Transitivity
4:55 — Integers and Mathematical Induction
5:30 — Prime Numbers and the Fundamental Theorem
8:10 — Rational Numbers: Dense but Incomplete
8:40 — Why √2 is Irrational (Visual Proof)
10:03 — The Supremum: Least Upper Bounds
11:29 — Axiom 10: The Completeness Axiom
14:05 — The Archimedean Property
14:58 — Conclusion: R is a Complete Ordered Field

This video is designed for:
Math students taking Real Analysis for the first time
Anyone curious about the foundations of mathematics
Teachers looking for visual explanations of axioms
Self-learners who want rigorous math made intuitive

No advanced prerequisites. We start from basic arithmetic and build up.
BASED ON:

This video covers Sections 1.1–1.13 of Tom Apostol's "Mathematical Analysis" (2nd Edition), one of the most respected textbooks in real analysis.

TAKEAWAYS:

1. ℝ is a COMPLETE ORDERED FIELD — these three words encode all 10 axioms
2. Completeness is what separates ℝ from ℚ — rationals have "gaps"
3. The supremum (least upper bound) is the key tool of analysis
4. Mathematical induction is like falling dominoes
5. Prime factorization is unique — this is NOT obvious and requires proof

CORRECTIONS & FEEDBACK:

Found an error? Have a question? Leave a comment! I read every one.

#RealAnalysis #Mathematics #MathAnimation #Axioms #RealNumbers #Completeness #MathEducation #Manim #Proofs #Analysis

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]