Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Splitting Dataframe of Duplicates Based on Criteria with Pandas

  • vlogize
  • 2025-04-06
  • 0
Splitting Dataframe of Duplicates Based on Criteria with Pandas
  • ok logo

Скачать Splitting Dataframe of Duplicates Based on Criteria with Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Splitting Dataframe of Duplicates Based on Criteria with Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Splitting Dataframe of Duplicates Based on Criteria with Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Splitting Dataframe of Duplicates Based on Criteria with Pandas

Learn how to efficiently split a pandas dataframe of duplicates based on specified criteria, optimizing your data analysis process.
---
This video is based on the question https://stackoverflow.com/q/73507063/ asked by the user 'neo2049' ( https://stackoverflow.com/u/4112607/ ) and on the answer https://stackoverflow.com/a/73507251/ provided by the user 'Vladimir Fokow' ( https://stackoverflow.com/u/14627505/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Splitting dataframe of duplicates based on criteria

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Managing Duplicates in Pandas Dataframes: A Comprehensive Guide

Dealing with duplicates in your data is a common challenge, especially when working with larger datasets. If you've found yourself with a dataframe that contains duplicated entries—like multiple records for the same email address—you may need a strategy to neatly split these entries based on certain criteria. This guide will walk you through a hands-on solution using pandas, a powerful data manipulation library in Python.

Understanding the Problem

Imagine you have a dataframe filled with duplicate email addresses. Here’s a quick look at a sample dataframe:

IDEmailAddressNameCountryDistanceIDLenNonNAN39203920john@ gmail.comJohnUK128632323john@ gmail.comNaNUK1255In this dataframe, you will notice that the email address john@ gmail.com appears twice. Your goal is to create two new dataframes:

df1: Where the duplicate row has either the higher NonNAN value; or if they are the same, the one with the lowest IDLen.

df2: The remaining rows that didn’t make it into df1.

The Strategy

While df.duplicated() is a handy method to identify duplicates, it has its limitations in this scenario. Instead, we can create a custom function to apply more complex criteria to select the appropriate rows.

Step 1: Define the Selection Logic

You’ll need to create a boolean mask that captures the rows based on your criteria for df1. Here’s how we can break it down:

Group the dataframe by the EmailAddress field.

For each group, select the row with the maximum NonNAN value.

If multiple rows have the same NonNAN value, choose the one with the minimum IDLen.

If there are still multiple candidates, simply select the first one.

Step 2: Implement the Logic with Code

Here’s a simple Python function that implements this logic:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

Defining the function f(df): This function accepts a dataframe and returns a mask indicating which rows meet the criteria.

Creating the initial mask: The mask identifies rows with the maximum NonNAN values.

Refining the mask: In cases where multiple rows share the maximum NonNAN value, the function further narrows down to the row with the minimum IDLen.

Final df1 and df2: The dataframe is split into df1 and df2, using the mask to differentiate which rows to keep.

Conclusion

With the code provided, you can easily filter through your dataframe of duplicates based on specified criteria. This method enhances data integrity by ensuring that you keep the most relevant entries without losing important information. Armed with this knowledge, you can now tackle duplicate entries in your datasets more effectively, leading to cleaner and more useful data analyses.

If you have any questions about this process or need further assistance, feel free to drop a comment below! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]