Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 16-DCGAN from Scratch with Tensorflow - Create Fake Images from CELEB-A Dataset | Deep Learning

  • Rohan-Paul-AI
  • 2021-09-15
  • 5966
16-DCGAN from Scratch with Tensorflow - Create Fake Images from CELEB-A Dataset | Deep Learning
Computer VisionDeep LearningKerasLearn Deep LearningLearn Machine LearningMachine LearningPythonTensorflowdata sciencedata science projectdeep learning projectsdeep learning tensorflowdeep learning tutorialkagglemachine learning tutorialtensorflow tutorialwhat is deep learningMachine Learning Full Coursemachine learning for beginnersMachine Learning tutorial for beginnerslearn machine learning with pythonmachine learning course
  • ok logo

Скачать 16-DCGAN from Scratch with Tensorflow - Create Fake Images from CELEB-A Dataset | Deep Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 16-DCGAN from Scratch with Tensorflow - Create Fake Images from CELEB-A Dataset | Deep Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 16-DCGAN from Scratch with Tensorflow - Create Fake Images from CELEB-A Dataset | Deep Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 16-DCGAN from Scratch with Tensorflow - Create Fake Images from CELEB-A Dataset | Deep Learning

🔥🐍 Checkout the MASSIVELY UPGRADED 2nd Edition of my Book (with 1300+ pages of Dense Python Knowledge) Covering 350+ Python 🐍 Core concepts

🟠 Book Link - https://rohanpaul.gumroad.com/l/pytho...

---------------------

Hi, I am a Machine Learning Engineer | Kaggle Master. Connect with me on 🐦 TWITTER:   / rohanpaul_ai   - for daily in-depth coverage of Machine Learning / LLM / OpenAI / LangChain / Python Intricacies Topics.


Deep Convolutional GANs (DCGANs) introduced convolutions to the generator and discriminator networks. In this video, I am implementing Deep Convolutional GANs (DCGANs) from scratch to create Fake Images.

👉 Link to PART-2 - Video Explaining in detail the Generator() Function and its filter_size, input_shape of DCGAN -    • 38-DCGAN's Generator Function - Understand...  

👉 Github Repo - https://bit.ly/3QTCZw2

👉 Link to my Kaggle Notebook - https://www.kaggle.com/paulrohan2020/...

👉 Kaggle Dataset - https://www.kaggle.com/jessicali9530/...

👉 DCGAN Original Paper - https://arxiv.org/abs/1511.06434

@0:00 Intro
@2:20 Fundamentals of GAN
@4:50 Normal Neural Network vs Convolutional Neural Network
@6:32 DCGAN - Deep Convolutional GANs Architecture
@10:00 Deep Convolutional GANs Original Paper Reading
@13:55 Start of Coding from scratch of Deep Convolutional GANs - Get Data in Google Colab
@18:14 Preprocessing and getting CELEB-A dataset ready for DCGAN training
@35:41 Generator Network of DCGAN (Deep Convolutional GANs) - Coding from Scratch
@38:37 What is Transpose of a CNN or Conv2DTranspose Function of Keras
@42:23 Conv2DTranspose of Keras - Explanations of Function Arguments
@49:29 Discriminator Network of DCGAN (Deep Convolutional GANs ) - Coding from Scratch
@52:22 Why setting discriminator.trainable to False during model compilation of Deep Convolutional GANs
@53:27 Overall architecture or Framework of DCGAN (Deep Convolutional GANs ) Training
@55:32 Final Training Code of DCGAN (Deep Convolutional GANs ) for CELEB-A dataset

Here is the summary of DCGAN:
Replace all max pooling with convolutional stride
Use transposed convolution for upsampling.
Eliminate fully connected layers.
Use Batch normalization except the output layer for the generator and the input layer of the discriminator.
Use ReLU in the generator except for the output which uses tanh.
Use LeakyReLU in the discriminator.

----------------

🚀🔬 Checkout my Generative Adversarial Network (GAN) video course in Gumroad -

7.5 Hours of Course - 6 different GAN Architecture implementations from scratch with #PyTorch

🚀🔬 https://bit.ly/3Ozcf3y

You can find me here:

**********************************************
👨🏻‍💼 LINKEDIN:   / rohan-paul-b27285129  
🐦 TWITTER:   / rohanpaul_ai  
🟠 Substack : https://rohanpaul.substack.com/
👨‍🔧 Kaggle: https://www.kaggle.com/paulrohan2020
👨‍💻 GITHUB: https://github.com/rohan-paul
📸 Instagram:   / rohan_paul_2020  
🟠 My YouTube-Finance Channel: https://www.youtube.com/@paulrohan/vi...

**********************************************


Other Playlist you might like 👇

🟠 MachineLearning & DeepLearning Concepts & interview Question Playlist - https://bit.ly/380eYDj

🟠 ComputerVision / DeepLearning Algorithms Implementation Playlist - https://bit.ly/36jEvpI

🟠 DataScience | MachineLearning Projects Implementation Playlist - https://bit.ly/39MEigt

🟠 Natural Language Processing Playlist : https://bit.ly/3P6r2CL



#machinelearning #datascience #nlp #textprocessing #kaggle #tensorflow #pytorch #deeplearning #deeplearningai #100daysofmlcode #neuralnetworks #pythonprogramming #python #100DaysOfMLCode

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]