Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Counting Distinct Column Values with Spark and Scala

  • vlogize
  • 2025-09-28
  • 0
Counting Distinct Column Values with Spark and Scala
Count distinct column values for a given set of columnsscaladataframeapache spark
  • ok logo

Скачать Counting Distinct Column Values with Spark and Scala бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Counting Distinct Column Values with Spark and Scala или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Counting Distinct Column Values with Spark and Scala бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Counting Distinct Column Values with Spark and Scala

Learn how to count distinct values for specific columns using Spark and Scala by following this easy-to-understand guide.
---
This video is based on the question https://stackoverflow.com/q/63555754/ asked by the user 'User9102d82' ( https://stackoverflow.com/u/6920976/ ) and on the answer https://stackoverflow.com/a/63555894/ provided by the user 'Lamanus' ( https://stackoverflow.com/u/11841571/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Count distinct column values for a given set of columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Counting Distinct Column Values in Spark with Scala

In the world of data analysis, it's often crucial to count and analyze distinct values across specific columns in datasets. Imagine you're working with a DataFrame, and you have the following structure:

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to create a new column named TotalTypes that counts the distinct FileType values for each combination of Id and Date. In this post, we’ll go over how to achieve this using Spark and Scala, providing you with clear steps to follow.

Problem Breakdown

Given your DataFrame, you want to transform it to include a new column like so:

[[See Video to Reveal this Text or Code Snippet]]

The output needs to reflect that within the same Id and Date, there are distinct FileType values. Here’s how you can do it effectively.

Solution Steps

To count distinct values in Spark using Scala, we can leverage the powerful Window functions. Let’s walk through the implementation step by step:

Step 1: Import Necessary Libraries

Start by importing the required libraries from Spark to use the Window functionality.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define the Window Specification

Next, define two window specifications that will allow us to partition the data appropriately:

The first window (w1) will partition the data by Id and Date, and order it by FileType. This window will help us to rank distinct values.

The second window (w2) will partition the data by Id and Date without any specific order, which will be useful for calculating the maximum value across the partitions.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Calculate Total Distinct Types

We will now add a new column, TotalTypes, to your DataFrame. This column will compute the maximum of the ranks derived from the first window.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Understanding the Result

When you run the above code snippet, the output will display the original data along with the new TotalTypes column:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using the Window functions in Spark with Scala, you can efficiently compute distinct counts across your datasets. This method not only makes your code cleaner but also optimizes performance when dealing with large datasets.

With this approach, counting distinct column values becomes straightforward, allowing you to focus on deriving insights from your data instead of struggling with complex syntax. Try implementing this technique in your own Spark applications, and watch how it simplifies your data processing tasks!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]