Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Drop Duplicates in Pandas DataFrame with Multiple Columns

  • vlogize
  • 2025-05-25
  • 1
Drop Duplicates in Pandas DataFrame with Multiple Columns
Drop duplicated rows by multiple columns if they originally or after exchanging position are same inpythonpython 3.xpandasdataframe
  • ok logo

Скачать Drop Duplicates in Pandas DataFrame with Multiple Columns бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Drop Duplicates in Pandas DataFrame with Multiple Columns или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Drop Duplicates in Pandas DataFrame with Multiple Columns бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Drop Duplicates in Pandas DataFrame with Multiple Columns

Learn how to effectively drop duplicated rows in a Pandas DataFrame based on multiple columns, considering both original and exchanged positions.
---
This video is based on the question https://stackoverflow.com/q/68948870/ asked by the user 'ah bon' ( https://stackoverflow.com/u/8410477/ ) and on the answer https://stackoverflow.com/a/68948900/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop duplicated rows by multiple columns if they originally or after exchanging position are same in Pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Drop Duplicates in Pandas DataFrame with Multiple Columns: A Step-by-Step Guide

When working with datasets in Python, one common challenge is managing duplicates. This can become particularly complex when duplicates may not only appear in their original form, but also when the order of values in certain columns is exchanged. In this guide, we’ll explore a practical solution using the Pandas library to drop duplicated rows by multiple columns in a DataFrame, specifically when these columns contain values that could be swapped.

The Problem Statement

Given a small dataset, we want to remove duplicates from it based on two columns: feature1 and feature2. However, if feature1 and feature2 hold the same values, regardless of their order, we consider them duplicates. Let's take a look at our dataset:

[[See Video to Reveal this Text or Code Snippet]]

From this dataset, we want the following result:

[[See Video to Reveal this Text or Code Snippet]]

Solution Overview

To achieve this result, we will utilize the capabilities of the NumPy and Pandas libraries. Here’s a breakdown of the steps we'll follow to remove the duplicates correctly.

Step 1: Sorting Values in feature1 and feature2

The first step involves sorting the values in the two columns we are considering. By sorting, we ensure that both feature1 and feature2 are in a consistent order, making it easy to identify duplicates that exist in different positions.

Step 2: Dropping Duplicates

Once we have sorted the values, we can use the drop_duplicates function in Pandas to eliminate any duplicate rows based on our specified columns.

Step 3: Review the Results

Finally, we'll print the resulting DataFrame to ensure we've achieved the desired outcome.

Implementation in Code

Here's the code that implements the steps mentioned above:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of Code

Import Libraries: We start by importing the necessary libraries (pandas and numpy).

Create DataFrame: We create a sample DataFrame with our data.

Sort the Selected Columns: We sort the values in feature1 and feature2 to ensure consistent order.

Drop Duplicates: We utilize drop_duplicates to remove any duplicate entries based on the sorted columns.

Output: The final DataFrame is printed, showing the deduplicated records.

Conclusion

Managing duplicates in datasets can be quite challenging, especially when dealing with multiple columns and potential order changes. By following the steps outlined in this guide, you can effectively drop duplicates from a Pandas DataFrame based on the values contained in specific columns. This approach not only streamlines your data but also helps in maintaining data integrity for subsequent analyses.

Make sure to try out this technique with your datasets, and feel free to reach out with any questions or suggestions. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]