Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Hongyang Zhang - Understanding and improving generalization in multitask and transfer learning

  • One world theoretical machine learning
  • 2022-05-04
  • 505
Hongyang Zhang - Understanding and improving generalization in multitask and transfer learning
  • ok logo

Скачать Hongyang Zhang - Understanding and improving generalization in multitask and transfer learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Hongyang Zhang - Understanding and improving generalization in multitask and transfer learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Hongyang Zhang - Understanding and improving generalization in multitask and transfer learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Hongyang Zhang - Understanding and improving generalization in multitask and transfer learning

Presentation given by Hongyang Zhang on May 4th 2022 in the one world seminar on the mathematics of machine learning on the topic "Understanding and improving generalization in multitask and transfer learning".

Abstract: A broad research question in ML is how to build models that generalize across various tasks. This talk will describe my recent works addressing this question. First, I will talk about some new analyses of multitask learning, which explains negative transfer using recent developments in deep learning theory. Second, I will talk about transfer learning from pretrained deep neural networks. I will describe our approach to avoid overfitting, with provable generalization using Hessians. Lastly, I will briefly talk about a related multigroup learning problem, and a recent contrastive learning approach for solving this problem.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]