Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Mutate Row Sums in R with NA Constraints Using dplyr

  • vlogize
  • 2025-10-06
  • 0
How to Mutate Row Sums in R with NA Constraints Using dplyr
Mutate row sum but only if NA count is 2 or lesssumnadplyrrowwise
  • ok logo

Скачать How to Mutate Row Sums in R with NA Constraints Using dplyr бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Mutate Row Sums in R with NA Constraints Using dplyr или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Mutate Row Sums in R with NA Constraints Using dplyr бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Mutate Row Sums in R with NA Constraints Using dplyr

Discover how to create a new column that sums specific values in R, applying a condition on NA counts with dplyr.
---
This video is based on the question https://stackoverflow.com/q/63985090/ asked by the user 'rustymarmot' ( https://stackoverflow.com/u/14173184/ ) and on the answer https://stackoverflow.com/a/63985126/ provided by the user 'Ronak Shah' ( https://stackoverflow.com/u/3962914/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Mutate row sum but only if NA count is 2 or less

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Handling Row Sums with NA Constraints in R

Data analysis often involves working with missing values, especially in large datasets. A common requirement is to aggregate values conditionally, based on the presence of missing data (NAs). This guide addresses how to mutate a new variable representing the sum of several columns, but only when the count of missing values is 2 or less. Let’s explore this solution step-by-step.

The Problem: Summing with NA Constraints

You have a dataset with multiple columns (v2 to v6), and you want to calculate a new sum variable. However, you want to apply a condition where this sum is only computed if there are no more than 2 missing values in the specified columns. If there are more than 2 missing values, you would prefer the sum to return NA.

Example Data

Here’s the data we'll be working with:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Using dplyr for Conditional Mutate

We’ll leverage the dplyr package in R for this task, specifically focusing on the rowwise operation and the c_across function. Below is a detailed breakdown of how to achieve this.

Step 1: Load Required Libraries

First, ensure that dplyr is installed and loaded into your R session:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Using rowwise and c_across

With dplyr, you can operate row-wise and create your conditional sum using mutate. Here’s the full code snippet:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Explanation of the Code

rowwise(): This function allows operations to be performed row by row rather than on the entire dataframe.

c_across(v2:v6): This function selects the columns to be analyzed (v2 to v6) for both sum and NA counting.

is.na(): Identifies which values in the selected columns are NA.

sum(is.na(...)): Counts how many NAs are present in the selected columns for each row.

na.rm = TRUE: This argument in the sum() function instructs R to ignore NA values when calculating the sum.

ifelse(condition, true_value, false_value): This function is used to apply the condition (NA count = 2) and return the appropriate sum or NA.

Step 4: Result Output

After executing the above code, the resulting dataframe will look like this:

v1v2v3v4v5v6colA47NANANANABNA833317C5955529D6NANANANANAENANA1113FNANA4NA4NAThis output captures the new column with sums calculated under the specified condition.

Conclusion

In this guide, we delved into how to conditionally compute sums with missing values in R using the dplyr package. By leveraging rowwise, ifelse, and c_across, you can efficiently manage your data while ensuring the integrity of your analyses. This approach not only enhances your data wrangling capabilities but also maintains clarity when working with imperfect data.

Feel free to experiment with your datasets to see how this method can apply to various situations in your data analysis journey!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]