Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Knowledge Distillation as Semiparametric Inference

  • Microsoft Research
  • 2021-05-03
  • 2104
Knowledge Distillation as Semiparametric Inference
  • ok logo

Скачать Knowledge Distillation as Semiparametric Inference бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Knowledge Distillation as Semiparametric Inference или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Knowledge Distillation as Semiparametric Inference бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Knowledge Distillation as Semiparametric Inference

More accurate machine learning models often demand more computation and memory at test time, making them difficult to deploy on CPU- or memory-constrained devices. Knowledge distillation alleviates this burden by training a less expensive student model to mimic the expensive teacher model while maintaining most of the original accuracy. To explain and enhance this phenomenon, we cast knowledge distillation as a semiparametric inference problem with the optimal student model as the target, the unknown Bayes class probabilities as nuisance, and the teacher probabilities as a plug-in nuisance estimate. By adapting modern semiparametric tools, we derive new guarantees for the prediction error of standard distillation and develop two enhancements—cross-fitting and loss correction—to mitigate the impact of teacher overfitting and underfitting on student performance. We validate our findings empirically on both tabular and image data and observe consistent improvements from our knowledge distillation enhancements.

Lester is a statistical machine learning researcher at Microsoft Research New England and an adjunct professor at Stanford University. He received his Ph.D. in Computer Science (2012), his M.A. in Statistics (2011) from UC Berkeley, and his B.S.E. in Computer Science (2007) from Princeton University. Before joining Microsoft, Lester spent three wonderful years as an assistant professor of Statistics and, by courtesy, Computer Science at Stanford and one as a Simons Math+X postdoctoral fellow, working with Emmanuel Candes. Lester’s Ph.D. advisor was Mike Jordan, and his undergraduate research advisors were Maria Klawe and David Walker. He got his first taste of research at the Research Science Institute and learned to think deeply of simple things at the Ross Program. Lester’s current research interests include statistical machine learning, scalable algorithms, high-dimensional statistics, approximate inference, and probability. Lately, he’s been developing and analyzing scalable learning algorithms for healthcare, climate forecasting, approximate posterior inference, high-energy physics, recommender systems, and the social good.

Learn more about the 2020-2021 Directions in ML: AutoML and Automating Algorithms virtual speaker series: https://www.microsoft.com/en-us/resea...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]