Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Learn Machine Learning | Reinforcement Learning - Upper Confidence Bound (UCB) in Python - Step 4

  • Learn Machine Learning
  • 2023-09-03
  • 257
Learn Machine Learning | Reinforcement Learning - Upper Confidence Bound (UCB) in Python - Step 4
Machine LearningData ScienceSupervised LearningUnsupervised LearningClassification AlgorithmsDecision TreesRandom ForestsSupport Vector MachinesNaive BayesLogistic RegressionArtificial IntelligencePattern RecognitionPredictive ModelingFeature EngineeringModel EvaluationTraining SetTesting SetCross-validationMulticlass ClassificationBinary ClassificationImbalanced ClassificationSVMSupport Vector Machinekernel svm
  • ok logo

Скачать Learn Machine Learning | Reinforcement Learning - Upper Confidence Bound (UCB) in Python - Step 4 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Learn Machine Learning | Reinforcement Learning - Upper Confidence Bound (UCB) in Python - Step 4 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Learn Machine Learning | Reinforcement Learning - Upper Confidence Bound (UCB) in Python - Step 4 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Learn Machine Learning | Reinforcement Learning - Upper Confidence Bound (UCB) in Python - Step 4

if you like this Video Support me for more Videos : https://www.paypal.me/ismailelmahii

GET ALL THE CODES AND DATASETS HERE: https://drive.google.com/drive/folder...

GET ALL THE CODES AND DATASETS .ZIP HERE: https://drive.google.com/file/d/1tbPD...

What you'll learn :
Master Machine Learning on Python & R
Have a great intuition of many Machine Learning models
Make accurate predictions
Make powerful analysis
Make robust Machine Learning models
Create strong added value to your business
Use Machine Learning for personal purpose
Handle specific topics like Reinforcement Learning, NLP and Deep Learning
Handle advanced techniques like Dimensionality Reduction
Know which Machine Learning model to choose for each type of problem
Build an army of powerful Machine Learning models and know how to combine
them to solve any problem

Tags :
machine learning,
machine learning tutorial,
machine learning python,
machine learning course,
machine learning projects,
machine learning engineer,
machine learning full course,
Binary Classification, Multiclass Classification, Imbalanced Classification, Overfitting, Underfitting, Hyperparameter Tuning, Ensemble Learning, Gradient Boosting, Neural Networks, Deep Learning, Convolutional Neural Networks, Recurrent Neural Networks, Transfer Learning, Dimensionality Reduction, Principal Component Analysis, Clustering, K-Nearest Neighbors, Evaluation Metrics, Confusion Matrix, Precision, Recall, F1 Score, Receiver Operating Characteristic Curve (ROC Curve), Area Under the Curve (AUC), Bias-Variance Tradeoff,Machine Learning, Data Science, Supervised Learning, Unsupervised Learning, Classification Algorithms, Decision Trees, Random Forests, Support Vector Machines, Naive Bayes, Logistic Regression, Artificial Intelligence, Pattern Recognition, Predictive Modeling, Feature Engineering, Model Evaluation, Training Set, Testing Set, Cross-validation,Scikit-learn, Pandas, NumPy, Matplotlib, Data Preprocessing, Feature Scaling, One-Hot Encoding, Handling Missing Data, Handling Categorical Data, Train-Test Split, Grid Search, Cross-Validation, Regularization, L1 Regularization, L2 Regularization, Decision Boundary, Bias Term, Weight Initialization, Learning Rate, Batch Size, Epochs, Stochastic Gradient Descent, Batch Gradient Descent, Mini-batch Gradient Descent, Early Stopping, Model Selection, Pipeline, Feature Selection,Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Logistic Regression, Decision Trees, Random Forests, Naive Bayes, AdaBoost, Gradient Boosting, XGBoost, LightGBM, CatBoost, Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Dropout, Batch Normalization, Data Augmentation, Transfer Learning, Hyperparameter Optimization, Model Evaluation Metrics, Accuracy, Precision, Recall, F1 Score, ROC-AUC Score, Confusion Matrix, Receiver Operating Characteristic (ROC) Curve, Learning Curve,Feature Importance, Gradient Descent, Learning Rate Decay, Overfitting/Underfitting Prevention, Regularization Techniques, Early Stopping, Model Stacking, Bagging, Boosting, Hyperparameter Tuning Techniques, Bayesian Optimization, Randomized Search, Pipeline, Grid Search, Model Selection, Learning Curve Analysis, Precision-Recall Curve, ROC Curve Analysis, Confusion Matrix Analysis, AUC-ROC Score, F-Beta Score, Confusion Matrix Visualization, Stratified Sampling, Imbalanced Data Handling Techniques, Sampling Techniques (Oversampling and Undersampling), SMOTE, Ensemble Techniques, Model Interpretability, SHAP Values, LIME,Class Weight Balancing, One-vs-One Classification, One-vs-All Classification, Multilabel Classification, Multiclass Classification, Error Analysis, Feature Engineering, Recursive Feature Elimination, Principal Component Analysis (PCA), Independent Component Analysis (ICA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Lasso Regression, Ridge Regression, Elastic Net, Naive Bayes Classifier Variations (e.g. Gaussian, Multinomial, Bernoulli), Perceptron, Support Vector Classifier (SVC), Kernel Trick, Decision Tree Pruning, Adaboost Classifier, Gradient Boosting Classifier, XGBoost Classifier, LightGBM Classifier, CatBoost Classifier, Random Forest Classifier, Confusion Matrix Heatmap, Precision-Recall Tradeoff, Receiver Operating Characteristic (ROC) Analysis,data mining, data visualization, decision trees, random forests, support vector machines, logistic regression, naive bayes, k-nearest neighbors, clustering, anomaly detection, feature engineering, model selection,hyperparameter tuning, ensemble learning, bagging

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]