Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Taming fNIRS-based BCI Input for Better Calibration and Broader Use

  • ACM SIGCHI
  • 2021-10-10
  • 155
Taming fNIRS-based BCI Input for Better Calibration and Broader Use
SIGCHIUIST 2021
  • ok logo

Скачать Taming fNIRS-based BCI Input for Better Calibration and Broader Use бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Taming fNIRS-based BCI Input for Better Calibration and Broader Use или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Taming fNIRS-based BCI Input for Better Calibration and Broader Use бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Taming fNIRS-based BCI Input for Better Calibration and Broader Use

Taming fNIRS-based BCI Input for Better Calibration and Broader Use
Liang Wang, Zhe Huang, Ziyu Zhou, Devon McKeon, Giles Blaney, Michael C. Hughes, Robert J.K Jacob

UIST'21: ACM Symposium on User Interface Software and Technology
Session: Pointing and BCI

Abstract
Brain-computer interfaces (BCI) are an emerging technology with many potential applications. Functional near-infrared spectroscopy (fNIRS) can provide a convenient and unobtrusive real-time input for BCI. fNIRS is especially promising as a signal that could be used to automatically classify a user’s current cognitive workload. However, the data needed to train such a classifier is currently not widely available, difficult to collect, and difficult to interpret due to noise and cross-subject variation. A further challenge is the need for significant user-specific calibration. To address these issues, we introduce a new dataset gathered from 15 subjects and a new multi-stage supervised machine learning pipeline. Our approach learns from both observed data and augmented data derived from multiple subjects in its early stages, and then fine-tunes predictions to an individual subject in its last stage. We show promising gains in accuracy in a standard “n-back” cognitive workload classification task compared to baselines that use only subject-specific data or only group-level data, even when our approach is given much less subject-specific data. Even though these experiments analyzed the data retrospectively, we carefully removed anything from our process that could not have been done in real-time, because our process is targeted at future real-time operations. This paper contributes a new dataset, a new multi-stage training pipeline, results showing significant improvement compared to alternative pipelines, and a discussion of the implications for user interface design. Our complete dataset and software are publicly available at https://tufts-hci-lab.github.io/code_.... We hope these results make fNIRS-based interactive brain input easier for a wide range of future researchers and designers to explore.

DOI:: https://doi.org/10.1145/3472749.3474743
WEB:: https://uist.acm.org/uist2021/

Talk Recording of the UIST 2021 Papers Program

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]