Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Number Systems | Class 9 - NCERT | Maths | Chapter 1 |Pi Paradox:Why is π Irrational if its a Ratio?

  • padhoai
  • 2025-10-11
  • 4
Number Systems | Class 9 - NCERT | Maths | Chapter 1 |Pi Paradox:Why is π Irrational if its a Ratio?
  • ok logo

Скачать Number Systems | Class 9 - NCERT | Maths | Chapter 1 |Pi Paradox:Why is π Irrational if its a Ratio? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Number Systems | Class 9 - NCERT | Maths | Chapter 1 |Pi Paradox:Why is π Irrational if its a Ratio? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Number Systems | Class 9 - NCERT | Maths | Chapter 1 |Pi Paradox:Why is π Irrational if its a Ratio? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Number Systems | Class 9 - NCERT | Maths | Chapter 1 |Pi Paradox:Why is π Irrational if its a Ratio?

Welcome to one of the most fascinating questions in mathematics! We are taught that π is defined as the ratio of a circle's circumference to its diameter (π=c/d). We are also taught that any number that can be written as a ratio is a rational number. Yet, we know π is famously irrational. How can both of these things be true? This video resolves this beautiful contradiction.

The key lies in the precise definition of a rational number: it is a ratio of two integers. The formula π=c/d involves physical measurements, not necessarily integers. The resolution to the paradox is this:
In any circle, it is impossible for both the circumference (c) and the diameter (d) to be integers (or even rational numbers).
If you construct a circle with a rational diameter (say, 1 meter), its circumference will be an irrational number (π meters).
Conversely, if you could somehow create a circle with a rational circumference (say, 3 meters), its diameter would have to be an irrational number (3/π meters).
Therefore, the ratio c/d always involves at least one irrational number, meaning it doesn't fit the "integer over integer" definition of a rational number.
This problem goes beyond simple calculation and touches the very philosophy of what numbers are. At Padho.ai, we love these moments of deep inquiry. Our AI-native platform is designed to encourage your curiosity. Our 24/7 AI mentor is the perfect companion to help you explore these paradoxes and build a true, lasting understanding of mathematical concepts.

➡️ Ponder this paradox on Padho.ai: https://learn.padho.ai/courses/MATH10...
➡️ Full Playlist for Number Systems (Chapter 1):    • Why "Every Rational Number is a Whole Numb...  

Padho.ai is the world's first AI-Native School, built on the philosophy of teaching, not just telling. We're on a mission to ensure every student's potential becomes their reality.

#Pi #IrrationalNumbers #MathParadox #NumberSystem #Class9Maths #NCERTSolutions #PadhoAI

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]