Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide

  • vlogize
  • 2025-09-26
  • 0
Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide
  • ok logo

Скачать Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide

Learn how to efficiently convert row-wise data with the same timestamp into a well-structured column-wise format in Pandas, complete with examples and explanations.
---
This video is based on the question https://stackoverflow.com/q/62962984/ asked by the user 'LoneWolf' ( https://stackoverflow.com/u/12576671/ ) and on the answer https://stackoverflow.com/a/62963010/ provided by the user 'BENY' ( https://stackoverflow.com/u/7964527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Extract row-wise data with the same time and convert it to column-wise in Pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming Row-Wise Data to Column-Wise Format in Pandas: A Step-By-Step Guide

When working with datasets in Pandas, you may encounter situations where you need to reorganize your data for better analysis. One common challenge is converting row-wise data that shares the same timestamp into a more structured column-wise format. In this guide, we will explore a typical problem related to this transformation and provide a clear solution using Pandas.

The Problem

Consider the following dataset with sales records. Each record has an ID, an item, a timestamp, and an amount:

[[See Video to Reveal this Text or Code Snippet]]

The goal is to pivot this data so that each unique timestamp appears only once, with item amounts displayed as columns corresponding to their items. For example, the output should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Let’s dive into how to achieve this transformation in Pandas.

The Solution

To transform the dataset from row-wise to column-wise format, we can utilize the pivot_table function in Pandas. This function simplifies the process of reorganizing our data without the need for complex loops.

Steps to Transform the Data

Import Pandas: Make sure you have the Pandas library imported in your Python environment.

[[See Video to Reveal this Text or Code Snippet]]

Prepare Your Data: Suppose you already have your data loaded into a DataFrame. Here’s an example DataFrame based on our dataset:

[[See Video to Reveal this Text or Code Snippet]]

Using the pivot_table Method: You can use the following code snippet to reshape your DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Handling the Output: The output DataFrame, df_pivot, will now contain a unique row for each timestamp along with corresponding amounts for each item.

Formatting the Result: If you want the item column names to appear without the hierarchical index that Pandas creates, you can convert them to a flat format.

[[See Video to Reveal this Text or Code Snippet]]

Example Code

Here's how your full code may look like:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the pivot_table function in Pandas makes transforming data from a row-wise to a column-wise format straightforward and efficient. Following the steps outlined above, you can enhance the readability and usability of your datasets, allowing for better analysis and insights.

If you need further assistance or examples, feel free to ask!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]