Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Coding the entire LLM Transformer Block

  • Vizuara
  • 2024-10-20
  • 14035
Coding the entire LLM Transformer Block
  • ok logo

Скачать Coding the entire LLM Transformer Block бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Coding the entire LLM Transformer Block или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Coding the entire LLM Transformer Block бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Coding the entire LLM Transformer Block

In this lecture, we code the entire Transformer block in Python based on it’s 5 components:

(1) Multi head attention
(2) Layer normalization
(3) Dropout layer
(4) Feedforward neural network with GELU activation
(5) Shortcut connections

We understand the theory, mathematical intuition and also do the coding for the entire implementation.

The key reference book which this video series very closely follows is Build a Large Language Model from Scratch by Manning Publications. All schematics and their descriptions are borrowed from this incredible book!

This book serves as a comprehensive guide to understanding and building large language models, covering key concepts, techniques, and implementations.

Affiliate links for purchasing the book will be added soon. Stay tuned for updates!

0:00 Transformer block visualised
3:56 5 components of the transformer block
16:28 Transformer block shape preservation
19:34 Let us jump into code!
21:14 Coding LayerNorm and FeedForward Neural Network class
25:40 Coding the transformer block class in Python
33:57 Transformer block code summary
35:12 Testing the transformer class using simple example
41:09 Lecture summary and next steps

Link to code file: https://drive.google.com/file/d/1k4Tw...

=================================================

✉️ Join our FREE Newsletter: https://vizuara.ai/our-newsletter/

=================================================
Vizuara philosophy:

As we learn AI/ML/DL the material, we will share thoughts on what is actually useful in industry and what has become irrelevant. We will also share a lot of information on which subject contains open areas of research. Interested students can also start their research journey there.

Students who are confused or stuck in their ML journey, maybe courses and offline videos are not inspiring enough. What might inspire you is if you see someone else learning and implementing machine learning from scratch.

No cost. No hidden charges. Pure old school teaching and learning.

=================================================

🌟 Meet Our Team: 🌟

🎓 Dr. Raj Dandekar (MIT PhD, IIT Madras department topper)
🔗 LinkedIn:   / raj-abhijit-dandekar-67a33118a  


🎓 Dr. Rajat Dandekar (Purdue PhD, IIT Madras department gold medalist)
🔗 LinkedIn:   / rajat-dandekar-901324b1  


🎓 Dr. Sreedath Panat (MIT PhD, IIT Madras department gold medalist)
🔗 LinkedIn:   / sreedath-panat-8a03b69a  

🎓 Sahil Pocker (Machine Learning Engineer at Vizuara)
🔗 LinkedIn:   / sahil-p-a7a30a8b  

🎓 Abhijeet Singh (Software Developer at Vizuara, GSOC 24, SOB 23)
🔗 LinkedIn:   / abhijeet-singh-9a1881192  

🎓 Sourav Jana (Software Developer at Vizuara)
🔗 LinkedIn:   / souravjana131  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]