Instantaneous Rate of Change

Описание к видео Instantaneous Rate of Change

This calculus video tutorial provides a basic introduction into the instantaneous rate of change of functions as well as the average rate of change. The average rate of change is equal to the slope of the secant line and the instantaneous rate of change is equal to the slope of the tangent line. You can find the instantaneous rate of change by evaluating the first derivative function at a point.

Derivative Applications - Formula Sheet: https://bit.ly/4eV6r1b

__________________________________
Derivatives - Fast Review:
   • Calculus 1 - Derivatives  

Equation of the Tangent Line:
   • How To Find The Equation of The Tange...  

Derivatives - Horizontal Tangent Line:
   • How to Find The Point Where The Graph...  

The Equation of The Normal Line:
   • How To Find The Equation of the Norma...  

The Equation of The Secant Line:
   • How To Find The Equation of a Secant ...  

_________________________________
Average and Instantaneous Velocity:
   • Average Velocity and Instantaneous Ve...  

Instantaneous Rate of Change:
   • Instantaneous Rate of Change  

Derivatives of Rational Functions:
   • Derivatives of Rational Functions  

Derivatives of Radical Functions:
   • Derivatives of Radical Functions  

Derivatives of Fractions:
   • How To Find The Derivative of a Fract...  

________________________________
Derivatives - Higher Order:
   • Higher Order Derivatives  

Simplifying Derivatives:
   • Simplifying Derivatives  

Derivatives - The Product Rule:
   • Product Rule For Derivatives  

Derivatives - The Quotient Rule:
   • Quotient Rule For Derivatives  

Derivatives - The Chain Rule:
   • Chain Rule For Finding Derivatives  

_______________________________________
Final Exams and Video Playlists:
https://www.video-tutor.net/

Full-Length Videos and Worksheets:
  / collections  

Комментарии

Информация по комментариям в разработке