Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Human-Aided Saliency Maps Improve Generalization of Deep Learning

  • ComputerVisionFoundation Videos
  • 2022-11-01
  • 337
Human-Aided Saliency Maps Improve Generalization of Deep Learning
  • ok logo

Скачать Human-Aided Saliency Maps Improve Generalization of Deep Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Human-Aided Saliency Maps Improve Generalization of Deep Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Human-Aided Saliency Maps Improve Generalization of Deep Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Human-Aided Saliency Maps Improve Generalization of Deep Learning

Authors: Aidan Boyd (University of Notre Dame)*; Kevin Bowyer (University of Notre Dame); Adam Czajka (University of Notre Dame) Description: Deep learning has driven remarkable accuracy increases in many computer vision problems. One ongoing challenge is how to achieve the greatest accuracy in cases where training data is limited. A second ongoing challenge is that trained models oftentimes do not generalize well even to new data that is subjectively similar to the training set. We address these challenges in a novel way, with the first-ever (to our knowledge) exploration of encoding human judgement about salient regions of images into the training data. We compare the accuracy and generalization of a state-of-the-art deep learning algorithm for a difficult problem in biometric presentation attack detection when trained on (a) original images with typical data augmentations, and (b) the same original images transformed to encode human judgement about salient image regions.
The latter approach results in models that achieve higher accuracy and better generalization, decreasing the error of the LivDet-Iris 2020 winner from 29.78% to 16.37%, and achieving impressive generalization in a leave-one-attack-type-out evaluation scenario. This work opens a new area of study for how to embed human intelligence into training strategies for deep learning to achieve high accuracy and generalization in cases of limited training data.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]