Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions

  • vlogize
  • 2025-04-07
  • 2
Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions
Why this quick select algorithm doesn't work alwayspython 3.xalgorithmsortingquicksortquickselect
  • ok logo

Скачать Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions

Explore the reasons why the `Quick Select` algorithm sometimes produces incorrect results and learn how to effectively tackle the problem with step-by-step solutions.
---
This video is based on the question https://stackoverflow.com/q/76832965/ asked by the user 'Alan' ( https://stackoverflow.com/u/3520791/ ) and on the answer https://stackoverflow.com/a/76833274/ provided by the user 'greybeard' ( https://stackoverflow.com/u/3789665/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Why this quick select algorithm doesn't work always

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Why the Quick Select Algorithm Can Fail: Common Pitfalls and Solutions

The Quick Select algorithm is a powerful tool for quickly finding the Top K Frequent Elements in a list of numbers. While it often works as intended, there are instances when it can yield unexpected results or even throw errors. In this guide, we will delve into the reasons why a simple Quick Select implementation may fail and provide a comprehensive guide to correct the issues.

The Problem with Quick Select

When working with the Quick Select algorithm, particularly with the implementation provided by the user, three main problems arise:

Incorrect Responses: Sometimes passing different random choices might yield results that are not accurate.

Maximum Recursion Depth Exceeded Error: Due to the random nature of the choice of pivot, the algorithm might recurse too deeply without reaching a base case.

Failure to Return Correct Output: There are times when the recursion does not appropriately return results, leading to None outputs instead of the expected list.

Why Does It Happen?

The main culprit behind these issues is how the pivot is selected and how results are returned during recursion. Let's break down the specific issues:

1. Random Choice Errors

The original implementation uses random.choice, which can lead to varying results because each execution can pick a different pivot element. This randomness introduces uncertainty which is not always desirable.

2. Missing Return Statements

If the recursive quickSelect function does not return values correctly, it may lead to None being returned for valid cases. This occurs commonly when handling recursion without properly managing the return pathway.

3. Uncontrolled Recursion

Not managing which partition (left or right) to continue with could lead to a scenario where unnecessary recursive calls happen, possibly exhausting the recursion limit.

Solution: Correcting The Implementation

Let’s look at how we can fix the given implementation step-by-step.

Step 1: Streamline Pivot Selection

Instead of continually using random.choice, we can start by fixing our pivot choice and ensuring it significantly reduces the number of recursive calls. A common approach is to ensure that we focus on the smaller partition:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Handle Returns Properly

Ensure that every recursive call returns a value. This can be done by modifying the original return pathway to ensure a proper return:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Remove Unnecessary Parameters

The ri parameter can be confusing and might lead to unintended results. Streamlining the parameters simplifies the logic. The algorithm should now focus solely on k and what elements are being processed:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The original Quick Select algorithm may have failed due to random selections and improper management of recursive returns. By understanding these pitfalls and implementing the solutions provided, you can ensure that your algorithm works as intended, allowing you to efficiently find the Top K Frequent Elements in your dataset without the overhead of exhaustive searches or heavy computation.

By modifying the algorithm and enhancing your knowledge of recursion and partitioning, you will be better equipped to utilize Quick Select effectively in your programming endeavors.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]