Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Class: 9th | Mathematics (FBISE) | Lecture # | Unit #12 | Theorem #12.1.3 |

  • Maths Made Easy
  • 2022-01-21
  • 4743
Class: 9th | Mathematics (FBISE) | Lecture # | Unit #12 | Theorem #12.1.3 |
Class: 9thMathematics (FBISE)Lecture #Unit #12Theorem #12.1.3Right Bisectors of TriangleMathematics Science GroupMaths Made Easy with Imran khanNew Mathematics tutorials in urduMaths tutorials in urduFG Fazaia School Maths LectureImran Khan Maths Lectures in urduThe Right Bisectors of the sides of a Triangle are concurrent
  • ok logo

Скачать Class: 9th | Mathematics (FBISE) | Lecture # | Unit #12 | Theorem #12.1.3 | бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Class: 9th | Mathematics (FBISE) | Lecture # | Unit #12 | Theorem #12.1.3 | или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Class: 9th | Mathematics (FBISE) | Lecture # | Unit #12 | Theorem #12.1.3 | бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Class: 9th | Mathematics (FBISE) | Lecture # | Unit #12 | Theorem #12.1.3 |

Class: 9th |
Mathematics (FBISE) |
Lecture # |
Unit #12 |
Theorem #12.1.3 |
Right Bisectors of Triangle |
The Right Bisectors of the sides of a Triangle are concurrent |
Mathematics Science Group |
Dear viewers, it is my pleasure to deliver you mathematics tutorials in simple and native language so that you can get it easily |
#MathsMadeEasy is a channel where you can improve your #Mathematics |
This is an education channel where maths made easy will try to solve your problems |
Students may send the problems they are facing through comments |
In this unit we stated and will proved the following theorems:
• Any point on the right bisector of a line segment is equidistant
from its end points.
• Any point equidistant from the end points of a line segment is on
the right bisector of it.
• The right bisectors of the sides of a triangle are #concurrent.
• Any point on the bisector of an angle is equidistant from its arms.
• Any point inside an angle, equidistant from its arms, is on the bisector of it.
The bisectors of the angles of a triangle are concurrent.
• Right bisection of a line segment means to draw a perpendicular
at the mid point of line segment.
• Bisection of an angle means to draw a ray to divide the given
angle into two equal parts.
Bisectors in a Triangle
#PerpendicularBisector
The perpendicular bisector of a side of a triangle is a line perpendicular to the side and passing through its midpoint.
The three perpendicular bisectors of the sides of a triangle meet in a single point, called the circumcenter . A point where three or more lines intersect is called a point of concurrency. So, the circumcenter is the point of concurrency of perpendicular bisectors of a triangle.
The circumcenter is equidistant from the vertices of the triangle.
The circle drawn with the circumcenter as the center and the radius equal to this distance passes through all the three vertices and is called circumcircle . This is the smallest circle that the triangle can be inscribed in.
The circumcenter lies inside the triangle for acute triangles, on the hypotenuse for right triangles and lies outside the triangle for obtuse triangles. The circumcenter coincides with the midpoint of the hypotenuse if it is an isosceles right triangle.
Proving the Concurrency of the Perpendicular Bisectors of a Triangle
Let’s prove that the three perpendicular bisectors of the sides of a triangle are concurrent which means that they intersect at one point.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]