Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Stanford Seminar - Perception-Rich Robot Autonomy with Neural Environment Models

  • Stanford Online
  • 2023-10-11
  • 6394
Stanford Seminar - Perception-Rich Robot Autonomy with Neural Environment Models
StanfordStanford Online
  • ok logo

Скачать Stanford Seminar - Perception-Rich Robot Autonomy with Neural Environment Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Stanford Seminar - Perception-Rich Robot Autonomy with Neural Environment Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Stanford Seminar - Perception-Rich Robot Autonomy with Neural Environment Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Stanford Seminar - Perception-Rich Robot Autonomy with Neural Environment Models

September 29, 2023

Mac Schwager
Associate Professor
Stanford University
Department of Aeronautics and Astronautics
Learn more about Mac: https://web.stanford.edu/~schwager/

New developments in computer vision and deep learning have led to the rise of neural environment representations: 3D maps that are stored as deep networks that spatially register occupancy, color, texture, and other physical properties. These environment models can generate photo-realistic synthetic images from unseen view points, and can store 3D information in exquisite detail. In this talk, I investigate the questions: How can robots use neural environment representations for perception, motion planning, manipulation, and simulation? I will present recent work from my lab in navigating a robot through a neural radiance field map of an environment while preserving safety guarantees. I will talk about realtime NeRF training, where we produce a neural map online in a SLAM-like fashion. I will also discuss open-vocabulary semantic navigation in a neural map, where we find or avoid objects specified at runtime. I will present the concept of dynamics-augmented neural objects, which are assets captured from RGB images whose motion (including contact) can be simulated in a differentiable physics engine. I will show how such models can be used in real-to-sim transfer and robot manipulation planning scenarios. I will conclude with future opportunities and challenges in integrating neural environment representations into the robot autonomy stack.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]