Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot System

  • IEEE Visualization Conference
  • 2020-10-23
  • 387
A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot System
  • ok logo

Скачать A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot System бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot System или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot System бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A Visual Analytics Approach to Debugging Cooperative, Autonomous Multi-Robot System

Authors: Suyun Bae, Federico Rossi, Joshua Vander Hook, Scott Davidoff, Kwan-Liu Ma
VIS website: http://ieeevis.org/year/2020/welcome
Autonomous multi-robot systems, where a team of robots shares information to perform tasks that are beyond an individual robot’s abilities, hold great promise for a number of applications, such as planetary exploration missions. Each robot in a multi-robot system that uses the shared-world coordination paradigm autonomously schedules which robot should perform a given task, and when, using its worldview–the robot’s internal representation of its belief about both its own state, and other robots’ states. A key problem for operators is that robots’ worldviews can fall out of sync (often due to weak communication links), leading to desynchronization of the robots’ scheduling decisions and inconsistent emergent behavior (e.g., tasks not performed, or performed by multiple robots). Operators face the time-consuming and difficult task of making sense of the robots’ scheduling decisions, detecting de-synchronizations, and pinpointing the cause by comparing every robot’s worldview. To address these challenges, we introduce MOSAIC Viewer, a visual analytics system that helps operators (i) make sense of the robots’ schedules and (ii) detect and conduct a root cause analysis of the robots’ desynchronized worldviews. Over a year-long partnership with roboticists at the NASA Jet Propulsion Laboratory, we conduct a formative study to identify the necessary system design requirements and a qualitative evaluation with 12 roboticists. We find that MOSAIC Viewer is faster- and easier-to-use than the users’ current approaches, and it allows them to stitch low-level details to formulate a high-level understanding of the robots’ schedules and detect and pinpoint the cause of the desynchronized worldviews.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]