Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Speeding Up Random Sampling for Pi Approximation in Python

  • vlogize
  • 2025-09-15
  • 0
Speeding Up Random Sampling for Pi Approximation in Python
Speeding up random sampling for approximation of pipythonnumpymatplotlib
  • ok logo

Скачать Speeding Up Random Sampling for Pi Approximation in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Speeding Up Random Sampling for Pi Approximation in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Speeding Up Random Sampling for Pi Approximation in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Speeding Up Random Sampling for Pi Approximation in Python

Discover how to enhance the performance of your Python code for approximating Pi using random sampling techniques with Numpy.
---
This video is based on the question https://stackoverflow.com/q/62627605/ asked by the user 'jared' ( https://stackoverflow.com/u/12131013/ ) and on the answer https://stackoverflow.com/a/62627862/ provided by the user 'arc-menace' ( https://stackoverflow.com/u/10963245/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Speeding up random sampling for approximation of pi

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Speeding Up Random Sampling for Pi Approximation in Python

Approximating Pi (π) using random sampling is not only a classic exercise in mathematics but also a fun programming challenge. The method commonly involves simulating the game of darts – randomly throwing points within a square with an inscribed circle and calculating the ratio of points that land inside the circle to the total number of points thrown. However, if you've tried this method using Python, you may have encountered performance issues, particularly with larger numbers of "darts." In this guide, we'll explore the performance challenges when approximating Pi and how to speed up the process.

The Problem: Performance Issues in Random Sampling

The main issue arises when attempting to increase the number of darts thrown. As you increase the count, you may notice your code running significantly slower. The culprit in most of these scenarios is the for loop, where computation happens for each dart thrown.

What’s Happening?

Each iteration of the loop generates a random point and evaluates whether it falls inside the circle.

The performance bottleneck becomes evident as the loop runs repetitively for thousands or millions of iterations.

The Solution: Optimizing the Dart Throwing Process

Step 1: Utilize Numpy for Efficient Random Number Generation

Instead of generating random numbers one at a time within the loop, we can use numpy.random.uniform to generate an entire array of random points in one go. This approach significantly cuts down the execution time by leveraging Numpy's optimized performance.

Step 2: Update Your Code

Here’s how you can modify your code to improve its efficiency:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Code Explanation

Random Point Generation:

We create two arrays, array_of_rand_x and array_of_rand_y, containing all the x and y coordinates of the darts at once.

Checking Points in Circle:

The loop only checks how many points fall inside the circle, instead of generating points during each iteration.

Efficient Plotting:

We plot all points in one command, which is significantly faster than plotting each point individually inside the loop.

Performance Improvement:

By redesigning the structure of the code, large sample sizes can be handled more efficiently.

Conclusion

By leveraging Numpy's powerful capabilities for batch processing random numbers, we can efficiently approximate Pi by throwing many more darts without a dramatic increase in computation time. If you encounter performance issues with your Python code for random sampling, remember to evaluate your loops and consider batch processing for a speed boost.

Now you can enjoy a faster and more efficient approximation of Pi and take your programming skills to the next level! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]