Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Miguel Cabrera - Time Series Forecasting using Machine Learning - PyCon Colombia 2020

  • PyCon Colombia
  • 2020-03-09
  • 201
Miguel Cabrera - Time Series Forecasting using Machine Learning - PyCon Colombia 2020
  • ok logo

Скачать Miguel Cabrera - Time Series Forecasting using Machine Learning - PyCon Colombia 2020 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Miguel Cabrera - Time Series Forecasting using Machine Learning - PyCon Colombia 2020 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Miguel Cabrera - Time Series Forecasting using Machine Learning - PyCon Colombia 2020 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Miguel Cabrera - Time Series Forecasting using Machine Learning - PyCon Colombia 2020

Miguel Cabrera
--------------------------------------------
New Yorker
--------------------------------------------
Social Networks:

Twitter:   / mfcabrera  
Github: https://github.com/mfcabrera
LinkedIn:   / mfcabrera  
--------------------------------------------
Time Series Forecasting using Machine Learning (Inglés)
--------------------------------------------
On this talk I will introduce the time series forecasting problem, the traditional methods as well as recent ML approaches discussing important steps such as target value transformation, commonly used predictors as well as hyper-parameter search.

Description: When mentioning Time Series Forecasting what comes to mind are autoregressive models or exponential smoothing techniques using a dependent variable and the time dimension. Although those techniques work well in some domains, in others like retail, e-commerce, logistic and pricing, time series can be influenced by external factors that are hard to model using these traditional methods.

When posing time series forecasting as a regression problem, one can use machine learning techniques like linear regression and support vector machines as well as more advanced models such as neural nets and boosted trees to perform the forecast. The main challenge here is not related to the particular machine learning technique but to the data preparation and feature engineering necessary to create powerful predictors.

The talk is divided in three sections: in the first section I will briefly describe time series and their applications; common evaluation metrics, the models used traditionally to work with them and the limitations they bring. In the second I will focus on modeling, describing some machine learning methodologies, useful predictors and transformations that improve their predictive power. Finally I will combine the aforementioned concepts in small code samples using publicly available datasets to show how to apply some of these techniques using Python.The libraries used for include Pandas, Scikit-Learn and Catboost.

This talk assumes you are familiar with basic Machine Learning concepts. Previous knowledge of time series forecasting is not necessary but beneficial. Knowledge of the Python stack for data processing (numpy, scikit-learn, pandas, etc.) is recommended.
--------------------------------------------------
We want to say thanks to all our sponsors who helped make the conference a huge success.

Universidad EAFIT - http://www.eafit.edu.co/
Globant - https://www.globant.com/
Linode - https://www.linode.com/
Mercadolibre.com - https://www.mercadolibre.com.co/
monoku.com - https://monoku.com/
Playvox - https://www.playvox.com/
UruIT - https://uruit.com/
Elastic - https://www.elastic.co/es/
#The_Python_Software_Foundation - https://www.python.org/
Monadical - https://monadical.com/
Fluid Attacks - https://fluidattacks.com/
Swapps - https://swapps.com/
TributiOnline - https://www.tributi.com/
VanHack - https://vanhack.com/
Avanet - http://avanet.org/
Cafeto Software - https://cafeto.co/
OmniBnk - https://omnibnk.com/
AutonomicMind - https://autonomicmind.com/
#AIFund - https://aifund.ai/

Follow us

Facebook:   / pyconcolombia  
Twitter:   / pyconcolombia  
Instagram:   / pyconcolombia  
Telegram: https://t.me/pyconcolombia
LinkedIn:   / pycon-colombia  
Flickr: https://www.flickr.com/photos/pyconco...

More About PyCon Colombia in http://www.pycon.co

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]