Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT

  • Computer Science & IT Conference Proceedings
  • 2025-01-05
  • 46
Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT
Event ExtractionLLMsFew-Shot PromptingGeminiGPTLayered PromptingCombined Prompting
  • ok logo

Скачать Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT

Few-Shot Event Extraction in Lithuanian with Google Gemini and OpenAI GPT

Arunas Ciuksys and Rita Butkiene, Kaunas University of Technology, Lithuania

Abstract

Automatic event extraction (EE) is a crucial tool across various domains, allowing for more efficient analysis and decision-making by extracting domain-specific information from vast amounts of textual data. In the context of under-resourced languages like Lithuanian, the development of EE systems is particularly challenging due to the lack of annotated datasets. This study investigates and evaluates the event extraction capabilities of two large language models (LLMs): OpenAI's GPT and Google Gemini, using few-shot prompting. We propose novel methodologies, including a combined approach and a layered prompting approach, to improve the performance of these models in identifying two specific event types. The models were benchmarked using various performance metrics, such as accuracy, precision, recall, and F1-score, against a manually annotated gold-standard corpus. The results demonstrate that LLMs achieve satisfactory performance in extracting events in Lithuanian, though model accuracy varied depending on the prompting methodology. The findings underscore the potential of LLMs in addressing event extraction challenges for under-resourced languages, while also pointing to opportunities for improvement through enhanced prompt strategies and refined methodologies.

Keywords

Event Extraction, LLMs, Few-Shot Prompting, Gemini, GPT, Layered Prompting, Combined Prompting

Full Text : https://aircconline.com/csit/papers/v...
Abstract URL : https://aircconline.com/csit/abstract...
Volume URL : https://airccse.org/csit/V14N25.html

#llms #gemini #gpt #computerscience #informationtechnology #artificialintelligence

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]