Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Removing Duplicate Columns as Rows in a Pandas DataFrame

  • vlogize
  • 2025-04-05
  • 0
Removing Duplicate Columns as Rows in a Pandas DataFrame
How to remove duplicate columns as rows for pandas dfpythonpandasdataframeduplicates
  • ok logo

Скачать Removing Duplicate Columns as Rows in a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Removing Duplicate Columns as Rows in a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Removing Duplicate Columns as Rows in a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Removing Duplicate Columns as Rows in a Pandas DataFrame

Discover techniques to effectively remove duplicate columns as rows from a Pandas DataFrame, enhancing data clarity and organization.
---
This video is based on the question https://stackoverflow.com/q/73137720/ asked by the user 'MK2121' ( https://stackoverflow.com/u/16599493/ ) and on the answer https://stackoverflow.com/a/73137813/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to remove duplicate columns as rows for pandas df

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Remove Duplicate Columns as Rows for a Pandas DataFrame

Handling data efficiently is essential for anyone working in data analysis, and one common issue faced by many users, especially beginners, is the presence of duplicate columns in a DataFrame. This often leads to confusion and can make data processing cumbersome. In this guide, we will explore how to effectively remove duplicated columns as rows in a Pandas DataFrame, turning a cluttered dataset into a clean and organized one.

Understanding the Problem

Imagine you have a DataFrame with several columns, some of which are duplicates with different suffixes (like _dup1, _dup2, etc.). Your goal is to transform the DataFrame in such a way that these duplicated columns are stacked into rows, linking them with their original non-duplicate columns. Here’s an example of the provided DataFrame structure that illustrates the challenge:

abcc_dup1c_dup2c_dup3dd_dup1d_dup2d_dup3hellobye12345678From this DataFrame, we want to transform it into a more readable format:

abcdhellobye15hellobye26hellobye37hellobye48Solution Overview

The solution involves a few steps that utilize the capabilities of the Pandas library effectively. Below, we'll break down the solution into clear sections.

1. Setting Up Your Environment

Make sure you've installed Pandas. If you haven't, you can install it using pip:

[[See Video to Reveal this Text or Code Snippet]]

2. Initialize the DataFrame

First, create the DataFrame using the data provided. Here’s how you can set it up in Python:

[[See Video to Reveal this Text or Code Snippet]]

3. Transforming the DataFrame

To manage the transformation, we can leverage a combination of set_index, stack, and some lambda functions. The following code snippet illustrates how to do this:

[[See Video to Reveal this Text or Code Snippet]]

4. Explanation of the Code

Setting the Index: We first set the index using set_index(cols) to separate the main identifier columns (in this case, a and b).

Handling Column Names: The set_axis method is used in conjunction with the str.split method to rename the columns by removing the _dup suffix.

Stacking the Data: The stack function reshapes the DataFrame so that duplicated entries become rows. droplevel(-1) is called to remove the additional level introduced during stacking.

Resetting the Index: Finally, reset_index() is used to convert the DataFrame back into a standard format.

5. Final Output

The final output will look like this:

[[See Video to Reveal this Text or Code Snippet]]

This transformation makes it much easier to analyze and visualize the data without the clutter of duplicated columns.

Conclusion

By following the outlined steps, you can easily convert duplicate columns into rows within a Pandas DataFrame. This will not only streamline your data but also enhance the overall effectiveness of your data analysis process. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]